AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

An innovative way of etching MoS2: Characterization and mechanistic investigation

Yuan Huang1,2,3<Jing Wu2,3<Xiangfan Xu2,3Yuda Ho2,3Guangxin Ni2,3Qiang Zou1Gavin Kok Wai Koon2,3Weijie Zhao2,3,4A. H. Castro Neto2,3,6Goki Eda2,3,4Chengmin Shen1Barbaros Özyilmaz2,3,5,6( )
Beijing National Laboratory for Condensed Matter PhysicsInstitute of Physics, Chinese Academy of SciencesBeijing100190China
Department of Physics, 2 Science Drive 3National University of Singapore117542Singapore
Graphene Research Centre, 6 Science Drive 2National University of Singapore117542Singapore
Department of ChemistryNational University of Singapore6 Science Drive 2117546Singapore
Nanocore, 4 Engineering Drive 3National University of Singapore117576Singapore
NUS Graduate School for Integrative Sciences and Engineering (NGS)Centre for Life Sciences (CeLS)28 Medical Drive117456Singapore

§ These two authors made an equal contribution to the work.

Show Author Information

Graphical Abstract

Abstract

We report a systematic study of the etching of MoS2 crystals by using XeF2 as a gaseous reactant. By controlling the etching process, monolayer MoS2 with uniform morphology can be obtained. The Raman and photoluminescence spectra of the resulting material were similar to those of exfoliated MoS2. Utilizing this strategy, different patterns such as a Hall bar structure and a hexagonal array can be realized. Furthermore, the etching mechanism was studied by introducing graphene as an etching mask. We believe our technique opens an easy and controllable way of etching MoS2, which can be used to fabricate complex nanostructures, such as nanoribbons, quantum dots, and transistor structures. This etching process using XeF2 can also be extended to other interesting two-dimensional crystals.

Electronic Supplementary Material

Download File(s)
nr-6-3-200_ESM.pdf (707.1 KB)

References

1

Coleman, J. N.; Lotya, M.; O'Neill, A.; Bergin, S. D.; King, P. J.; Khan, U.; Young, K.; Gaucher, A.; De, S.; Smith, R. J. et al. Two-dimensional nanosheets produced by liquid exfoliation of layered materials. Science 2011, 331, 568-571.

2

Steinberg, H.; Gardner, D. R.; Lee, Y. S.; Jarillo-Herrero, P. Surface state transport and ambipolar electric field effect in Bi2Se3 nanodevices. Nano Lett. 2010, 10, 5032-5036.

3

Ramakrishna Matte, H. S. S.; Gomathi, A.; Manna, A. K.; Late, D. J.; Datta, R.; Pati, S. K.; Rao, C. N. R. MoS2 and WS2 analogues of graphene. Angew. Chem. 2010, 122, 4153-4156.

4

Teweldebrhan, D.; Goyal, V.; Balandin, A. A. Exfoliation and characterization of bismuth telluride atomic quintuples and quasi-two-dimensional crystals. Nano Lett. 2010, 10, 1209-1218.

5

Lee, C.; Wei, X.; Kysar, J. W.; Hone, J. Measurement of the elastic properties and intrinsic strength of monolayer graphene. Science 2008, 321, 385-388.

6

Ni, G. X.; Zheng, Y.; Bae, S.; Tan, C. Y.; Kahya, O.; Wu, J.; Hong, B. H.; Yao, K.; Özyilmaz, B. Graphene-ferroelectric hybrid structure for flexible transparent electrodes. ACS Nano 2012, 6, 3935-3942.

7

Novoselov, K. S.; Geim, A. K.; Morozov, S. V.; Jiang, D.; Katsnelson, M. I.; Grigorieva, I. V.; Dubonos, S. V.; Firsov, A.A. Two-dimensional gas of massless Dirac fermions in graphene. Nature 2005, 438, 197-200.

8

Yang, R.; Zhang, L. C.; Wang, Y.; Shi, Z. W.; Shi, D. X.; Gao, H. J.; Wang, E. G.; Zhang, G. Y. An anisotropic etching effect in the graphene basal plane. Adv. Mater. 2010, 22, 4014-4019.

9

Castro Neto, A. H.; Guinea, F.; Peres, N. M. R.; Novoselov, K. S.; Geim, A. K. The electronic properties of graphene. Rev. Mod. Phys. 2009, 81, 109-162.

10

Shi, Z. W.; Yang, R.; Zhang, L. C.; Wang, Y.; Liu, D. H.; Shi, D. X.; Wang, E. G.; Zhang, G. Y. Patterning graphene with zigzag edges by self-aligned anisotropic etching. Adv. Mater. 2011, 23, 3061-3065.

11

Lu, Y. H.; Feng, Y. P. Band-gap engineering with hybrid graphane-graphene nanoribbons. J. Phys. Chem. C 2009, 113, 20841-20844.

12

Balog, R.; Jørgensen, B.; Nilsson, L.; Andersen, M.; Rienks, E.; Bianchi, M.; Fanetti, M.; Lægsgaard, E.; Baraldi, A.; Lizzit, S. et al. Bandgap opening in graphene induced by patterned hydrogen adsorption. Nat. Mater. 2010, 9, 315-319.

13

Jiao, L. Y.; Zhang, L.; Wang, X. R.; Diankov, G.; Dai, H. J. Narrow graphene nanoribbons from carbon nanotubes. Nature 2009, 458, 877-880.

14

Mak, K. F.; Lee, C.; Hone, J.; Shan, J.; Heinz, T. F. Atomically thin MoS2: A new direct-gap semiconductor. Phys. Rev. Lett. 2010, 105, 136805.

15

Kuc, A.; Zibouche, N.; Heine, T. Influence of quantum confinement on the electronic structure of the transition metal sulfide TS2. Phys. Rev. B 2011, 83, 245213.

16

Korn, T.; Heydrich, S.; Hirmer, M.; Schmutzler, J.; Schüller, C. Low-temperature photocarrier dynamics in monolayer MoS2. Appl. Phys. Lett. 2011, 99, 102109.

17

Radisavljevic, B.; Radenovic, A.; Brivio, J.; Giacometti, V.; Kis, A. Single-layer MoS2 transistors. Nat. Nanotechnol. 2011, 6, 147-150.

18

Bertolazzi, S.; Brivio, J.; Kis, A. Stretching and breaking of ultrathin MoS2. ACS Nano 2011, 5, 9703-9709.

19

Castellanos-Gomez, A.; Poot, M.; Steele, G. A.; van der Zant, H. S. J.; Agraït, N.; Rubio-Bollinger, G. Elastic properties of freely suspended MoS2 nanosheets. Adv. Mater. 2012, 24, 772-775.

20

Fortin, E.; Sears, W. M. Photovoltaic effect and optical absorption in MoS2. J. Phys. Chem. Solids 1982, 43, 881-884.

21

Chen, Z. B.; Cummins, D.; Reinecke, B. N.; Clark, E.; Sunkara, M. K.; Jaramillo, T. F. Core-shell MoO3-MoS2 nanowires for hydrogen evolution: A functional design for electrocatalytic materials. Nano Lett. 2011, 11, 4168-4175.

22

Miyake, K.; Shigekawa, H. Surface structures of layered compounds treated with alkali-metal hydroxide solutions studied by scanning tunneling microscopy. Synth. Met. 1995, 71, 1753-1754.

23

Xiao, D.; Liu, G. B.; Feng, W. X.; Xu, X. D.; Yao, W. Coupled spin and valley physics in monolayers of MoS2 and other group-Ⅵ dichalcogenides. Phys. Rev. Lett. 2012, 108, 196802.

24

Zomer, P. J.; Dash, S. P.; Tombros, N.; van Wees, B. J. A transfer technique for high mobility graphene devices on commercially available hexagonal boron nitride. Appl. Phys. Lett. 2011, 99, 232104.

25

Robinson, J. T.; Burgess, J. S.; Junkermeier, C. E.; Badescu, S. C.; Reinecke, T. L.; Perkins, F. K.; Zalalutdniov, M. K.; Baldwin, J. W.; Culbertson, J. C.; Sheehan, P. E. et al. Properties of fluorinated graphene films. Nano Lett. 2010, 10, 3001-3005.

26

Withers, F.; Dubois, M.; Savchenko, A. K. Electron properties of fluorinated single-layer graphene transistors. Phys. Rev. B. 2010, 82, 073403.

27

Ribas, M. A.; Singh, A. K.; Sorokin, P. B.; Yakobson, B. I. Patterning nanoroads and quantum dots on fluorinated graphene. Nano Res. 2011, 4, 143-152.

28

Castellanos-Gomez, A.; Barkelid, M.; Goossens, A. M.; Calado, V. E.; van der Zant, H. S. J.; Steele, G. A. Laser-thinning of MoS2: On demand generation of a single-layer semiconductor. Nano Lett. 2012, 12, 3187-3192.

29

Ferrari, A. C.; Meyer, J. C.; Scardaci, V.; Casiraghi, C.; Lazzeri, M.; Mauri, F.; Piscanec, S.; Jiang, D.; Novoselov, K. S.; Roth, S. et al. Raman spectrum of graphene and graphene layers. Phys. Rev. Lett. 2006, 97, 187401.

30

Gorbachev, R. V.; Riaz, I.; Nair, R. R.; Jalil, R.; Britnell, L.; Belle, B. D.; Hill, E. W.; Novoselov, K. S.; Watanabe, K.; Taniguchi, T. et al. Hunting for monolayer boron nitride: Optical and Raman signatures. Small 2011, 7, 465-468.

31

Frey, G. L.; Tenne, R.; Matthews, M. J.; Dresselhaus, M. S.; Dresselhaus, G. Raman and resonance Raman investigation of MoS2 nanoparticles. Phys. Rev. B 1999, 60, 2883-2892.

32

Calizo, I.; Balandin, A. A.; Bao, W.; Miao, F.; Lau, C. N. Temperature dependence of the Raman spectra of graphene and graphene multilayers. Nano Lett. 2007, 7, 2645-2649.

33

Lee, C.; Yan, H.; Brus, L. E.; Heinz, T. F.; Hone, J.; Ryu, S. Anomalous lattice vibrations of single and few-layer MoS2. ACS Nano 2010, 4, 2695-2700.

34

Splendiani, A.; Sun, L.; Zhang, Y. B.; Li, T.; Kim, J.; Chim, C. Y.; Galli, G.; Wang, F. Emerging photoluminescence in monolayer MoS2. Nano Lett. 2010, 10, 1271-1275.

35

Coehoorn, R.; Haas, C.; de Groot, R. A. Electronic structure of MoSe2, MoS2, and WSe2. Ⅱ. The nature of the optical band gaps. Phys. Rev. B 1987, 35, 6203-6306.

36

Ni, G. X.; Zheng, Y.; Bae, S.; Kim, H. R.; Pachoud, A.; Kim, Y. S.; Tan, C. L.; Im, D.; Ahn, J. H.; Hong, B. H.; Özyilmaz, B. Quasi-periodic nanoripples in graphene grown by chemical vapor deposition and its impact on charge transport. ACS Nano 2012, 6, 1158-1164.

37

Silvestrov, P. G.; Efetov, K. B. Quantum dots in graphene. Phys. Rev. Lett. 2007, 98, 016802.

38

Ataca, C.; Sahin, H.; Akturk, E.; Ciraci, S. Mechanical and electronic properties of MoS2 nanoribbons and their defects. J. Phys. Chem. C 2011, 115, 3934-3941.

39

Li, Y. F.; Zhou, Z.; Zhang, S. B.; Chen, Z. F. MoS2 nano-ribbons: High stability and unusual electronic and magnetic properties. J. Am. Chem. Soc. 2008, 130, 16739-16744.

Nano Research
Pages 200-207
Cite this article:
Huang Y, Wu J, Xu X, et al. An innovative way of etching MoS2: Characterization and mechanistic investigation. Nano Research, 2013, 6(3): 200-207. https://doi.org/10.1007/s12274-013-0296-8

715

Views

141

Crossref

N/A

Web of Science

144

Scopus

9

CSCD

Altmetrics

Received: 18 January 2013
Accepted: 29 January 2013
Published: 21 February 2013
© Tsinghua University Press and Springer-Verlag Berlin Heidelberg 2013
Return