AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

High-strength composite yarns derived from oxygen plasma modified super-aligned carbon nanotube arrays

Haoming Wei1,2Yang Wei1( )Yang Wu1iang LiuL1Shoushan Fan1,2Kaili Jiang1( )
Department of Physics & Tsinghua–Foxconn Nanotechnology Research CenterTsinghua UniversityBeijing100084China
Department of Materials Science and EngineeringTsinghua UniversityBeijing100084China
Show Author Information

Graphical Abstract

Abstract

Spinning carbon nanotube (CNT) yarns from super-aligned carbon nanotube (SACNT) arrays is a promising approach to fabricate high-strength fibers. However the reported tensile strengths of the as-prepared fibers are far below that of an individual CNT. It is therefore still a challenge to improve their mechanical strengths. Here we report that the tensile strengths and Young's moduli can be further improved to 2.2 GPa and 200 GPa respectively, if we first treat the SACNT array with oxygen plasma by using a reactive ion etching (RIE) facility, then dry spin yarns from it and make composite fibers with polyvinyl alcohol. According to the experimental results obtained using scanning electron microscopy (SEM), Raman spectroscopy and X-ray photoelectron spectroscopy (XPS), the improvement is attributed to the oxygen RIE process, as it can create functional groups on the outer walls of CNTs and thus improve the interaction between the CNTs and the polymer molecules.

References

1

Zhang, M.; Atkinson, K. R.; Baughman, R. H. Multifunctional carbon nanotube yarns by downsizing an ancient technology. Science 2004, 306, 1358-1361.

2

Zhang, X.; Li, Q.; Tu, Y.; Li, Y.; Coulter, J. Y.; Zheng, L.; Zhao, Y.; Jia, Q.; Peterson, D. E.; Zhu, Y. Strong carbon-nanotube fibers spun from long carbon-nanotube arrays. Small 2007, 3, 244-248.

3

Zhang, X. B.; Jiang, K. L.; Teng, C.; Liu, P.; Zhang, L.; Kong, J.; Zhang, T. H.; Li, Q. Q.; Fan, S. S. Spinning and processing continuous yarns from 4-inch wafer scale super-aligned carbon nanotube arrays. Adv. Mater. 2006, 18, 1505- 1510.

4

Liu, P.; Wei, Y.; Jiang, K. L.; Sun, Q.; Zhang, X. B.; Fan, S. S.; Zhang, S. F.; Ning, C. G.; Deng, J. K. Thermionic emission and work function of multiwalled carbon nanotube yarns. Phys. Rev. B 2006, 73, 235412.

5

Wei, Y.; Weng, D.; Yang, Y. C.; Zhang, X. B.; Jiang, K. L.; Liu, L.; Fan, S. S. Efficient fabrication of field electron emitters from the multiwalled carbon nanotube yarns. Appl. Phys. Lett. 2006, 89, 063101.

6

Wei, Y.; Jiang, K. L.; Liu, L.; Chen, Z.; Fan, S. S. Vacuum-breakdown-induced needle-shaped ends of multiwalled carbon nanotube yarns and their field emission applications. Nano Lett. 2007, 7, 3792-3797.

7

Vigolo, B.; Pénicaud, A.; Sauder, C.; Pailler, R.; Journet, C.; Bernier, P.; Poulin, P. Macroscopic fibers and ribbons of oriented carbon nanotubes. Science 2000, 290, 1331-1334.

8

Dalton, A. B.; Collins, S.; Munoz, E.; Razal, J. M.; Ebron, V. H.; Ferraris, J. P.; Coleman, J. N.; Kim, B. G.; Baughman, R. H. Super-tough carbon-nanotube fibres. Nature 2003, 423, 703-703.

9

Ericson, L. M.; Fan, H.; Peng, H.; Davis, V. A.; Zhou, W.; Sulpizio, J.; Wang, Y.; Booker, R.; Vavro, J.; Guthy, C.; et al. Macroscopic, neat, single-walled carbon nanotube fibers. Science 2004, 305, 1447-1450.

10

Miaudet, P.; Badaire, S.; Maugey, M.; Derré, A.; Pichot, V.; Launois, P.; Poulin, P.; Zakri, C. Hot-drawing of single and multiwall carbon nanotube fibers for high toughness and alignment. Nano Lett. 2005, 5, 2212-2215.

11

Kozlov, M. E.; Capps, R. C.; Sampson, W. M.; Ebron, V. H.; Ferraris, J. P.; Baughman, R. H. Spinning solid and hollow polymer-free carbon nanotube fibers. Adv. Mater. 2005, 17, 614-617.

12

Li, Y. -L.; Kinloch, I. A.; Windle, A. H. Direct spinning of carbon nanotube fibers from chemical vapor deposition synthesis. Science 2004, 304, 276-278.

13

Koziol, K.; Vilatela, J.; Moisala, A.; Motta, M.; Cunniff, P.; Sennett, M.; Windle, A. High-performance carbon nanotube fiber. Science 2007, 318, 1892-1895.

14

Jiang, K.; Li, Q.; Fan, S. Nanotechnology: Spinning continuous carbon nanotube yarns. Nature 2002, 419, 801-801.

15

Zhang, X.; Li, Q.; Holesinger, T. G.; Arendt, P. N.; Huang, J.; Kirven, P. D.; Clapp, T. G.; DePaula, R. F.; Liao, X.; Zhao, Y.; et al. Ultrastrong, stiff, and lightweight carbon-nanotube fibers. Adv. Mater. 2007, 19, 4198-4201.

16

Zhang, M.; Fang, S. L.; Zakhidov, A. A.; Lee, S. B.; Aliev, A. E.; Williams, C. D.; Atkinson, K. R.; Baughman, R. H. Strong, transparent, multifunctional, carbon nanotube sheets. Science 2005, 309, 1215-1219.

17

Tran, C. D.; Humphries, W.; Smith, S. M.; Huynh, C.; Lucas, S. Improving the tensile strength of carbon nanotube spun yarns using a modified spinning process. Carbon 2009, 47, 2662-2670.

18

Liu, K.; Sun, Y.; Zhou, R.; Zhu, H.; Wang, J.; Liu, L.; Fan, S.; Jiang, K. Carbon nanotube yarns with high tensile strength made by a twisting and shrinking method. Nanotechnology 2010, 21, 045708.

19

Liu, K.; Sun, Y.; Lin, X.; Zhou, R.; Wang, J.; Fan, S.; Jiang, K. Scratch-resistant, highly conductive, and high-strength carbon nanotube-based composite yarns. ACS Nano 2010, 4, 5827-5834.

20

Yu, M. -F.; Lourie, O.; Dyer, M. J.; Moloni, K.; Kelly, T. F.; Ruoff, R. S. Strength and breaking mechanism of multiwalled carbon nanotubes under tensile load. Science 2000, 287, 637-640.

21

Yu, M. -F.; Files, B. S.; Arepalli, S.; Ruoff, R. S. Tensile loading of ropes of single wall carbon nanotubes and their mechanical properties. Phys. Rev. Lett. 2000, 84, 5552-5555.

22

Demczyk, B. G.; Wang, Y. M.; Cumings, J.; Hetman, M.; Han, W.; Zettl, A.; Ritchie, R. O. Direct mechanical measurement of the tensile strength and elastic modulus of multiwalled carbon nanotubes. Mater. Sci. Eng. A 2002, 334, 173-178.

23

Ma, W.; Liu, L.; Zhang, Z.; Yang, R.; Liu, G.; Zhang, T.; An, X.; Yi, X.; Ren, Y.; Niu, Z.; et al. High-strength composite fibers: Realizing true potential of carbon nanotubes in polymer matrix through continuous reticulate architecture and molecular level couplings. Nano Lett. 2009, 9, 2855-2861.

24

Jia, J.; Zhao, J.; Xu, G.; Di, J.; Yong, Z.; Tao, Y.; Fang, C.; Zhang, Z.; Zhang, X.; Zheng, L.; Li, Q. A comparison of the mechanical properties of fibers spun from different carbon nanotubes. Carbon 2011, 49, 1333-1339.

25

Fang, C.; Zhao, J.; Jia, J.; Zhang, Z.; Zhang, X.; Li, Q. Enhanced carbon nanotube fibers by polyimide. Appl. Phys. Lett. 2010, 97, 181906.

26

Wang, Q. H.; Corrigan, T. D.; Dai, J. Y.; Chang, R. P. H.; Krauss, A. R. Field emission from nanotube bundle emitters at low fields. Appl. Phys. Lett. 1997, 70, 3308-3310.

27

Bubert, H.; Haiber, S.; Brandl, W.; Marginean, G.; Heintze, M.; Brüser, V. Characterization of the uppermost layer of plasma-treated carbon nanotubes. Diamond Relat. Mater. 2003, 12, 811-815.

28

Felten, A.; Bittencourt, C.; Pireaux, J. J.; Van Lier, G.; Charlier, J. C. Radio-frequency plasma functionalization of carbon nanotubes surface O2, NH3, and CF4 treatments. J. Appl. Phys. 2005, 98, 074308.

29

Xu, T.; Yang, J.; Liu, J.; Fu, Q. Surface modification of multi-walled carbon nanotubes by O2 plasma. Appl. Surf. Sci. 2007, 253, 8945-8951.

30

Zhi, C. Y.; Bai, X. D.; Wang, E. G. Enhanced field emission from carbon nanotubes by hydrogen plasma treatment. Appl. Phys. Lett. 2002, 81, 1690-1692.

31

Jiang, K.; Wang, J.; Li, Q.; Liu, L.; Liu, C.; Fan, S. Superaligned carbon nanotube arrays, films, and yarns: A road to applications. Adv. Mater. 2011, 23, 1154-1161.

32

Feng, C.; Liu, K.; Wu, J. -S.; Liu, L.; Cheng, J. -S.; Zhang, Y.; Sun, Y.; Li, Q.; Fan, S.; Jiang, K. Flexible, stretchable, transparent conducting films made from superaligned carbon nanotubes. Adv. Funct. Mater. 2010, 20, 885-891.

33

Banerjee, S.; Wong, S. S. Rational sidewall functionalization and purification of single-walled carbon nanotubes by solution-phase ozonolysis. J. Phys. Chem. B 2002, 106, 12144-12151.

34

Ago, H.; Kugler, T.; Cacialli, F.; Salaneck, W. R.; Shaffer, M. S. P.; Windle, A. H.; Friend, R. H. Work functions and surface functional groups of multiwall carbon nanotubes. J. Phys. Chem. B 1999, 103, 8116-8121.

35

Pirlot, C.; Willems, I.; Fonseca, A.; Nagy, J. B.; Delhalle, J. Preparation and characterization of carbon nanotube/ polyacrylonitrile composites. Adv. Eng. Mater. 2002, 4, 109-114.

36

Dassios, K. G. Poly(vinyl alcohol)-infiltrated carbon nanotube carpets. Mater. Sci. Appl. 2012, 3, 658-663.

37

Dassios, K. G.; Galiotis, C. Polymer-nanotube interaction in mwcnt/poly(vinyl alcohol) composite. Mats. Carbon 2012, 50, 4291-4294.

38

Bahr, J. L.; Yang, J.; Kosynkin, D. V.; Bronikowski, M. J.; Smalley, R. E.; Tour, J. M. Functionalization of carbon nanotubes by electrochemical reduction of aryl diazonium salts: A bucky paper electrode. J. Am. Chem. Soc. 2001, 123, 6536-6542.

39

Cao, L.; Chen, H.; Wang, M.; Sun, J.; Zhang, X.; Kong, F. Photoconductivity study of modified carbon nanotube/ oxotitaniumphthalocyanine composites. J. Phys. Chem. B 2002, 106, 8971-8975.

40

Dettlaff-Weglikowska, U.; Benoit, J. -M.; Chiu, P. -W.; Graupner, R.; Lebedkin, S.; Roth, S. Chemical function-alization of single walled carbon nanotubes. Curr. Appl. Phys. 2002, 2, 497-501.

Nano Research
Pages 208-215
Cite this article:
Wei H, Wei Y, Wu Y, et al. High-strength composite yarns derived from oxygen plasma modified super-aligned carbon nanotube arrays. Nano Research, 2013, 6(3): 208-215. https://doi.org/10.1007/s12274-013-0297-7

573

Views

35

Crossref

N/A

Web of Science

35

Scopus

1

CSCD

Altmetrics

Received: 26 November 2012
Revised: 28 January 2013
Accepted: 29 January 2013
Published: 07 February 2013
© Tsinghua University Press and Springer-Verlag Berlin Heidelberg 2013
Return