AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Simultaneous N-intercalation and N-doping of epitaxial graphene on 6H-SiC(0001) through thermal reactions with ammonia

Zhou-jun WangMingming WeiLi JinYanxiao NingLiang YuQiang Fu( )Xinhe Bao( )
State Key Laboratory of CatalysisDalian Institute of Chemical Physicsthe Chinese Academy of SciencesDalian116023China
Show Author Information

Graphical Abstract

Abstract

Surface functionalization of epitaxial graphene overlayers on 6H-SiC(0001) has been attempted through thermal reactions in NH3. X-ray photoelectron spectroscopy and micro-region low energy electron diffraction results show that a significant amount of N is present at the NH3-treated graphene surface, which results in strong band bending at the SiC surface as well as decoupling of the graphene overlayers from the substrate. The majority of the surface N species can be removed by annealing in vacuum up to 850 ℃, weakening the surface band bending and resuming the strong coupling of graphene with the SiC surface. The desorbed N atoms can be attributed to the intercalated species between graphene and SiC. Low temperature scanning tunneling spectroscopy and density functional theory simulations confirm the presence of N dopants in the graphene lattice, which are in the form of graphitic substitution and can be stable above 850 ℃. This is the first report of simultaneous N intercalation and N doping of epitaxial graphene overlayers on SiC, and it may be employed to alter the surface physical and chemical properties of epitaxial graphene overlayers.

References

1

Novoselov, K. S.; Geim, A. K.; Morozov, S. V.; Jiang, D.; Zhang, Y.; Dubonos, S. V.; Grigorieva, I. V.; Firsov, A. A. Electric field effect in atomically thin carbon films. Science 2004, 306, 666–669.

2

Allen, M. J.; Tung, V. C.; Kaner, R. B. Honeycomb carbon: A review of graphene. Chem. Rev. 2010, 110, 132–145.

3

Riedl, C.; Coletti, C.; Starke, U. Structural and electronic properties of epitaxial graphene on SiC(0001): A review of growth, characterization, transfer doping and hydrogen intercalation. J. Phys. D: Appl. Phys. 2010, 43, 374009.

4

Batzill, M. The surface science of graphene: Metal interfaces, CVD synthesis, nanoribbons, chemical modifications, and defects. Surf. Sci. Rep. 2012, 67, 83–115.

5

Berger, C.; Song, Z. M.; Li, T. B.; Li, X. B.; Ogbazghi, A. Y.; Feng, R.; Dai, Z. T.; Marchenkov, A. N.; Conrad, E. H.; First, P. N.; et al. Ultrathin epitaxial graphite: 2D electron gas properties and a route toward graphene-based nanoelectronics. J. Phys. Chem. B 2004, 108, 19912–19916.

6

Geim, A. K. Graphene: Status and prospects. Science 2009, 324, 1530–1534.

7

Berger, C.; Song, Z. M.; Li, X. B.; Wu, X. S.; Brown, N.; Naud, C.; Mayou, D.; Li, T. B.; Hass, J.; Marchenkov, A. N.; et al. Electronic confinement and coherence in patterned epitaxial graphene. Science 2006, 312, 1191–1196.

8

Chen, W.; Xu, H.; Liu, L.; Gao, X.; Qi, D.; Peng, G.; Tan, S. C.; Feng, Y.; Loh, K. P.; Wee, A. T. S. Atomic structure of the 6H-SiC(0001) nanomesh. Surf. Sci. 2005, 596, 176–186.

9

Riedl, C.; Starke, U.; Bernhardt, J.; Franke, M.; Heinz, K. Structural properties of the graphene-SiC(0001) interface as a key for the preparation of homogeneous large-terrace graphene surfaces. Phys. Rev. B 2007, 76, 245406.

10

Varchon, F.; Feng, R.; Hass, J.; Li, X.; Nguyen, B. N.; Naud, C.; Mallet, P.; Veuillen, J. -Y.; Berger, C.; Conrad, E. H.; et al. Electronic structure of epitaxial graphene layers on SiC: Effect of the substrate. Phys. Rev. Lett. 2007, 99, 126805.

11

Wong, S. L.; Huang, H.; Wang, Y.; Cao, L.; Qi, D.; Santoso, I.; Chen, W.; Wee, A. T. S. Quasi-free-standing epitaxial graphene on SiC(0001) by fluorine intercalation from a molecular source. ACS Nano 2011, 5, 7662–7668.

12

Riedl, C.; Coletti, C.; Iwasaki, T.; Zakharov, A. A.; Starke, U. Quasi-free-standing epitaxial graphene on SiC obtained by hydrogen intercalation. Phys. Rev. Lett. 2009, 103, 246804.

13

Virojanadara, C.; Zakharov, A. A.; Yakimova, R.; Johansson, L. I. Buffer layer free large area bi-layer graphene on SiC(0001). Surf. Sci. 2010, 604, L4–L7.

14

Oida, S.; McFeely, F. R.; Hannon, J. B.; Tromp, R. M.; Copel, M.; Chen, Z.; Sun, Y.; Farmer, D. B.; Yurkas, J. Decoupling graphene from SiC(0001) via oxidation. Phys. Rev. B 2010, 82, 041411(R).

15

Walter, A. L.; Jeon, K. -J.; Bostwick, A.; Speck, F.; Ostler, M.; Seyller, T.; Moreschini, L.; Kim, Y. S.; Chang, Y. J.; Horn, K.; et al. Highly p-doped epitaxial graphene obtained by fluorine intercalation. Appl. Phys. Lett. 2011, 98, 184102.

16

Xia, C.; Watcharinyanon, S.; Zakharov, A. A.; Yakimova, R.; Hultman, L.; Johansson, L. I.; Virojanadara, C. Si intercalation/deintercalation of graphene on 6H-SiC(0001). Phys. Rev. B 2012, 85, 045418.

17

Premlal, B.; Cranney, M.; Vonau, F.; Aubel, D.; Casterman, D.; De Souza, M. M.; Simon, L. Surface intercalation of gold underneath a graphene monolayer on SiC(0001) studied by scanning tunneling microscopy and spectroscopy. Appl. Phys. Lett. 2009, 94, 263115.

18

Virojanadara, C.; Watcharinyanon, S.; Zakharov, A. A.; Johansson, L. I. Epitaxial graphene on 6H-SiC and Li intercalation. Phys. Rev. B 2010, 82, 205402.

19

Wang, X.; Li, X.; Zhang, L.; Yoon, Y.; Weber, P. K.; Wang, H.; Guo, J.; Dai, H. N-doping of graphene through electrothermal reactions with ammonia. Science 2009, 324, 768–771.

20

Liu, H.; Liu, Y.; Zhu, D. Chemical doping of graphene. J. Mater. Chem. 2011, 21, 3335–3345.

21

Li, X.; Wang, H.; Robinson, J. T.; Sanchez, H.; Diankov, G.; Dai, H. Simultaneous nitrogen doping and reduction of graphene oxide. J. Am. Chem. Soc. 2009, 131, 15939–15944.

22

Cervantes-Sodi, F.; Csanyi, G.; Piscanec, S.; Ferrari, A. C. Edge-functionalized and substitutionally doped graphene nanoribbons: Electronic and spin properties. Phys. Rev. B 2008, 77, 165427.

23

Wei, D.; Liu, Y.; Wang, Y.; Zhang, H.; Huang, L.; Yu, G. Synthesis of N-doped graphene by chemical vapor deposition and its electrical properties. Nano Lett. 2009, 9, 1752–1758.

24

Qu, L.; Liu, Y.; Baek, J. -B.; Dai, L. Nitrogen-doped graphene as efficient metal-free electrocatalyst for oxygen reduction in fuel cells. ACS Nano 2010, 4, 1321–1326.

25

Wang, Y.; Shao, Y.; Matson, D. W.; Li, J.; Lin, Y. Nitrogen-doped graphene and its application in electrochemical biosensing. ACS Nano 2010, 4, 1790–1798.

26

Reddy, A. L. M.; Srivastava, A.; Gowda, S. R.; Gullapalli, H.; Dubey, M.; Ajayan, P. M. Synthesis of nitrogen-doped graphene films for lithium battery application. ACS Nano 2010, 4, 6337–6342.

27

Jeong, H. M.; Lee, J. W.; Shin, W. H.; Choi, Y. J.; Shin, H. J.; Kang, J. K.; Choi, J. W. Nitrogen-doped graphene for high-performance ultracapacitors and the importance of nitrogen-doped sites at basal planes. Nano Lett. 2011, 11, 2472–2477.

28

Joucken, F.; Tison, Y.; Lagoute, J.; Dumont, J.; Cabosart, D.; Zheng, B.; Repain, V.; Chacon, C.; Girard, Y.; Botello-Méndez, A. R.; et al. Localized state and charge transfer in nitrogen-doped graphene. Phys. Rev. B 2012, 85, 161408 (R).

29

Rhim, S. H.; Qi, Y.; Liu, Y.; Weinert, M.; Li, L. Formation of nitrogen-vacancy complexes during plasma-assisted nitrogen doping of epitaxial graphene on SiC(0001). Appl. Phys. Lett. 2012, 100, 233119.

30

Velez-Fort, E.; Mathieu, C.; Pallecchi, E.; Pigneur, M.; Silly, M. G.; Belkhou, R.; Marangolo, M.; Shukla, A.; Sirotti, F.; Ouerghi, A. Epitaxial graphene on 4H-SiC(0001) grown under nitrogen flux: Evidence of low nitrogen doping and high charge transfer. ACS Nano 2012, 6, 10893–10900.

31

Cui, Y.; Gao, J.; Jin, L.; Zhao, J.; Tan, D.; Fu, Q.; Bao, X. An exchange intercalation mechanism for the formation of two-dimensional Si structure underneath graphene. Nano Res. 2012, 5, 352–360.

32

Wang, Z. -J.; Fu, Q.; Wang, Z.; Bao, X. Growth and characterization of Au, Ni and Au–Ni nanoclusters on 6H-SiC(0001) carbon nanomesh. Surf. Sci. 2012, 606, 1313–1322.

33

Jin, L.; Fu, Q.; Zhang, H.; Mu, R.; Zhang, Y.; Tan, D.; Bao, X. Tailoring the growth of graphene on Ru(0001) via engineering of the substrate surface. J. Phys. Chem. C 2012, 116, 2988–2993.

34

Wang, Z.; Fu, Q.; Bao, X. Effect of substrate surface reconstruction on interaction with adsorbates: Pt on 6H-SiC(0001). Langmuir 2010, 26, 7227–7232.

35

Tersoff, J.; Hamann, D. R. Theory and application for the scanning tunneling microscope. Phys. Rev. Lett. 1983, 50, 1998–2001.

36

Emtsev, K. V.; Speck, F.; Seyller, T.; Ley, L.; Riley, J. D. Interaction, growth, and ordering of epitaxial graphene on SiC{0001} surfaces: A comparative photoelectron spectroscopy study. Phys. Rev. B 2008, 77, 155303.

37

Bozso, F.; Avouris, P. Photoemission studies of the reactions of ammonia and N atoms with Si(100)-(2×1) and Si(111)-(7×7) surfaces. Phys. Rev. B 1988, 38, 3937–3942.

38

Peden, C. H. F.; Rogers, J. W.; Shinn, N. D.; Kidd, K. B.; Tsang, K. L. Thermally grown Si3N4 thin films on Si(100): Surface and interfacial composition. Phys. Rev. B 1993, 47, 15622–15629.

39

King, S. W.; Davis, R. F.; Nemanich, R. J. Hydrogen desorption kinetics and band bending for 6H-SiC(0001) surfaces. Surf. Sci. 2009, 603, 3104–3118.

40

Lüth, H. Solid Surfaces, Interfaces, and Thin Films, 5th ed.; Springer-Verlag Berlin Heidelberg: New York, NY, 2010.

41

Chai, J. W.; Pan, J. S.; Zhang, Z.; Wang, S. J.; Chen, Q.; Huan, C. H. A. X-ray photoelectron spectroscopy studies of nitridation on 4H-SiC(0001) surface by direct nitrogen atomic source. Appl. Phys. Lett. 2008, 92, 092119.

42

Gao, T.; Gao, Y.; Chang, C.; Chen, Y.; Liu, M.; Xie, S.; He, K.; Ma, X.; Zhang, Y.; Liu, Z. Atomic-scale morphology and electronic structure of manganese atomic layers underneath epitaxial graphene on SiC(0001). ACS Nano 2012, 6, 6562–6568.

43

Watcharinyanon, S.; Virojanadara, C.; Osiecki, J. R.; Zakharov, A. A.; Yakimova, R.; Uhrberg, R. I. G.; Johansson, L. I. Hydrogen intercalation of graphene grown on 6H-SiC(0001). Surf. Sci. 2011, 605, 1662–1668.

44

Mallet, P.; Varchon, F.; Naud, C.; Magaud, L.; Berger, C.; Veuillen, J. -Y. Electron states of mono- and bilayer graphene on SiC probed by scanning-tunneling microscopy. Phys. Rev. B 2007, 76, 041403(R).

45

Lauffer, P.; Emtsev, K. V.; Graupner, R.; Seyller, T.; Ley, L.; Reshanov, S. A.; Weber, H. B. Atomic and electronic structure of few-layer graphene on SiC(0001) studied with scanning tunneling microscopy and spectroscopy. Phys. Rev. B 2008, 77, 155426.

46

Huang, H.; Chen, W.; Chen, S.; Wee, A. T. S. Bottom-up growth of epitaxial graphene on 6H-SiC(0001). ACS Nano 2008, 2, 2513–2518.

47

Deng, D.; Pan, X.; Yu, L.; Cui, Y.; Jiang, Y.; Qi, J.; Li, W. -X.; Fu, Q.; Ma, X.; Xue, Q.; et al. Toward N-doped graphene via solvothermal synthesis. Chem. Mater. 2011, 23, 1188–1193.

48

Zhao, L.; He, R.; Rim, K. T.; Schiros, T.; Kim, K. S.; Zhou, H.; Gutiérrez, C.; Chockalingam, S. P.; Arguello, C. J.; Pálová, L.; et al. Visualizing individual nitrogen dopants in monolayer graphene. Science 2011, 333, 999–1003.

Nano Research
Pages 399-408
Cite this article:
Wang Z-j, Wei M, Jin L, et al. Simultaneous N-intercalation and N-doping of epitaxial graphene on 6H-SiC(0001) through thermal reactions with ammonia. Nano Research, 2013, 6(6): 399-408. https://doi.org/10.1007/s12274-013-0317-7

651

Views

39

Crossref

N/A

Web of Science

42

Scopus

3

CSCD

Altmetrics

Received: 14 March 2013
Revised: 06 April 2013
Accepted: 09 April 2013
Published: 26 April 2013
© Tsinghua University Press and Springer-Verlag Berlin Heidelberg 2013
Return