Article Link
Collect
Submit Manuscript
Show Outline
Outline
Graphical Abstract
Abstract
Keywords
References
Show full outline
Hide outline
Research Article

Simultaneous N-intercalation and N-doping of epitaxial graphene on 6H-SiC(0001) through thermal reactions with ammonia

Zhou-jun WangMingming WeiLi JinYanxiao NingLiang YuQiang Fu()Xinhe Bao()
State Key Laboratory of CatalysisDalian Institute of Chemical Physicsthe Chinese Academy of SciencesDalian116023China
Show Author Information

Graphical Abstract

View original image Download original image

Abstract

Surface functionalization of epitaxial graphene overlayers on 6H-SiC(0001) has been attempted through thermal reactions in NH3. X-ray photoelectron spectroscopy and micro-region low energy electron diffraction results show that a significant amount of N is present at the NH3-treated graphene surface, which results in strong band bending at the SiC surface as well as decoupling of the graphene overlayers from the substrate. The majority of the surface N species can be removed by annealing in vacuum up to 850 ℃, weakening the surface band bending and resuming the strong coupling of graphene with the SiC surface. The desorbed N atoms can be attributed to the intercalated species between graphene and SiC. Low temperature scanning tunneling spectroscopy and density functional theory simulations confirm the presence of N dopants in the graphene lattice, which are in the form of graphitic substitution and can be stable above 850 ℃. This is the first report of simultaneous N intercalation and N doping of epitaxial graphene overlayers on SiC, and it may be employed to alter the surface physical and chemical properties of epitaxial graphene overlayers.

References

1

Novoselov, K. S.; Geim, A. K.; Morozov, S. V.; Jiang, D.; Zhang, Y.; Dubonos, S. V.; Grigorieva, I. V.; Firsov, A. A. Electric field effect in atomically thin carbon films. Science 2004, 306, 666–669.

2

Allen, M. J.; Tung, V. C.; Kaner, R. B. Honeycomb carbon: A review of graphene. Chem. Rev. 2010, 110, 132–145.

3

Riedl, C.; Coletti, C.; Starke, U. Structural and electronic properties of epitaxial graphene on SiC(0001): A review of growth, characterization, transfer doping and hydrogen intercalation. J. Phys. D: Appl. Phys. 2010, 43, 374009.

4

Batzill, M. The surface science of graphene: Metal interfaces, CVD synthesis, nanoribbons, chemical modifications, and defects. Surf. Sci. Rep. 2012, 67, 83–115.

5

Berger, C.; Song, Z. M.; Li, T. B.; Li, X. B.; Ogbazghi, A. Y.; Feng, R.; Dai, Z. T.; Marchenkov, A. N.; Conrad, E. H.; First, P. N.; et al. Ultrathin epitaxial graphite: 2D electron gas properties and a route toward graphene-based nanoelectronics. J. Phys. Chem. B 2004, 108, 19912–19916.

6

Geim, A. K. Graphene: Status and prospects. Science 2009, 324, 1530–1534.

7

Berger, C.; Song, Z. M.; Li, X. B.; Wu, X. S.; Brown, N.; Naud, C.; Mayou, D.; Li, T. B.; Hass, J.; Marchenkov, A. N.; et al. Electronic confinement and coherence in patterned epitaxial graphene. Science 2006, 312, 1191–1196.

8

Chen, W.; Xu, H.; Liu, L.; Gao, X.; Qi, D.; Peng, G.; Tan, S. C.; Feng, Y.; Loh, K. P.; Wee, A. T. S. Atomic structure of the 6H-SiC(0001) nanomesh. Surf. Sci. 2005, 596, 176–186.

9

Riedl, C.; Starke, U.; Bernhardt, J.; Franke, M.; Heinz, K. Structural properties of the graphene-SiC(0001) interface as a key for the preparation of homogeneous large-terrace graphene surfaces. Phys. Rev. B 2007, 76, 245406.

10

Varchon, F.; Feng, R.; Hass, J.; Li, X.; Nguyen, B. N.; Naud, C.; Mallet, P.; Veuillen, J. -Y.; Berger, C.; Conrad, E. H.; et al. Electronic structure of epitaxial graphene layers on SiC: Effect of the substrate. Phys. Rev. Lett. 2007, 99, 126805.

11

Wong, S. L.; Huang, H.; Wang, Y.; Cao, L.; Qi, D.; Santoso, I.; Chen, W.; Wee, A. T. S. Quasi-free-standing epitaxial graphene on SiC(0001) by fluorine intercalation from a molecular source. ACS Nano 2011, 5, 7662–7668.

12

Riedl, C.; Coletti, C.; Iwasaki, T.; Zakharov, A. A.; Starke, U. Quasi-free-standing epitaxial graphene on SiC obtained by hydrogen intercalation. Phys. Rev. Lett. 2009, 103, 246804.

13

Virojanadara, C.; Zakharov, A. A.; Yakimova, R.; Johansson, L. I. Buffer layer free large area bi-layer graphene on SiC(0001). Surf. Sci. 2010, 604, L4–L7.

14

Oida, S.; McFeely, F. R.; Hannon, J. B.; Tromp, R. M.; Copel, M.; Chen, Z.; Sun, Y.; Farmer, D. B.; Yurkas, J. Decoupling graphene from SiC(0001) via oxidation. Phys. Rev. B 2010, 82, 041411(R).

15

Walter, A. L.; Jeon, K. -J.; Bostwick, A.; Speck, F.; Ostler, M.; Seyller, T.; Moreschini, L.; Kim, Y. S.; Chang, Y. J.; Horn, K.; et al. Highly p-doped epitaxial graphene obtained by fluorine intercalation. Appl. Phys. Lett. 2011, 98, 184102.

16

Xia, C.; Watcharinyanon, S.; Zakharov, A. A.; Yakimova, R.; Hultman, L.; Johansson, L. I.; Virojanadara, C. Si intercalation/deintercalation of graphene on 6H-SiC(0001). Phys. Rev. B 2012, 85, 045418.

17

Premlal, B.; Cranney, M.; Vonau, F.; Aubel, D.; Casterman, D.; De Souza, M. M.; Simon, L. Surface intercalation of gold underneath a graphene monolayer on SiC(0001) studied by scanning tunneling microscopy and spectroscopy. Appl. Phys. Lett. 2009, 94, 263115.

18

Virojanadara, C.; Watcharinyanon, S.; Zakharov, A. A.; Johansson, L. I. Epitaxial graphene on 6H-SiC and Li intercalation. Phys. Rev. B 2010, 82, 205402.

19

Wang, X.; Li, X.; Zhang, L.; Yoon, Y.; Weber, P. K.; Wang, H.; Guo, J.; Dai, H. N-doping of graphene through electrothermal reactions with ammonia. Science 2009, 324, 768–771.

20

Liu, H.; Liu, Y.; Zhu, D. Chemical doping of graphene. J. Mater. Chem. 2011, 21, 3335–3345.

21

Li, X.; Wang, H.; Robinson, J. T.; Sanchez, H.; Diankov, G.; Dai, H. Simultaneous nitrogen doping and reduction of graphene oxide. J. Am. Chem. Soc. 2009, 131, 15939–15944.

22

Cervantes-Sodi, F.; Csanyi, G.; Piscanec, S.; Ferrari, A. C. Edge-functionalized and substitutionally doped graphene nanoribbons: Electronic and spin properties. Phys. Rev. B 2008, 77, 165427.

23

Wei, D.; Liu, Y.; Wang, Y.; Zhang, H.; Huang, L.; Yu, G. Synthesis of N-doped graphene by chemical vapor deposition and its electrical properties. Nano Lett. 2009, 9, 1752–1758.

24

Qu, L.; Liu, Y.; Baek, J. -B.; Dai, L. Nitrogen-doped graphene as efficient metal-free electrocatalyst for oxygen reduction in fuel cells. ACS Nano 2010, 4, 1321–1326.

25

Wang, Y.; Shao, Y.; Matson, D. W.; Li, J.; Lin, Y. Nitrogen-doped graphene and its application in electrochemical biosensing. ACS Nano 2010, 4, 1790–1798.

26

Reddy, A. L. M.; Srivastava, A.; Gowda, S. R.; Gullapalli, H.; Dubey, M.; Ajayan, P. M. Synthesis of nitrogen-doped graphene films for lithium battery application. ACS Nano 2010, 4, 6337–6342.

27

Jeong, H. M.; Lee, J. W.; Shin, W. H.; Choi, Y. J.; Shin, H. J.; Kang, J. K.; Choi, J. W. Nitrogen-doped graphene for high-performance ultracapacitors and the importance of nitrogen-doped sites at basal planes. Nano Lett. 2011, 11, 2472–2477.

28

Joucken, F.; Tison, Y.; Lagoute, J.; Dumont, J.; Cabosart, D.; Zheng, B.; Repain, V.; Chacon, C.; Girard, Y.; Botello-Méndez, A. R.; et al. Localized state and charge transfer in nitrogen-doped graphene. Phys. Rev. B 2012, 85, 161408 (R).

29

Rhim, S. H.; Qi, Y.; Liu, Y.; Weinert, M.; Li, L. Formation of nitrogen-vacancy complexes during plasma-assisted nitrogen doping of epitaxial graphene on SiC(0001). Appl. Phys. Lett. 2012, 100, 233119.

30

Velez-Fort, E.; Mathieu, C.; Pallecchi, E.; Pigneur, M.; Silly, M. G.; Belkhou, R.; Marangolo, M.; Shukla, A.; Sirotti, F.; Ouerghi, A. Epitaxial graphene on 4H-SiC(0001) grown under nitrogen flux: Evidence of low nitrogen doping and high charge transfer. ACS Nano 2012, 6, 10893–10900.

31

Cui, Y.; Gao, J.; Jin, L.; Zhao, J.; Tan, D.; Fu, Q.; Bao, X. An exchange intercalation mechanism for the formation of two-dimensional Si structure underneath graphene. Nano Res. 2012, 5, 352–360.

32

Wang, Z. -J.; Fu, Q.; Wang, Z.; Bao, X. Growth and characterization of Au, Ni and Au–Ni nanoclusters on 6H-SiC(0001) carbon nanomesh. Surf. Sci. 2012, 606, 1313–1322.

33

Jin, L.; Fu, Q.; Zhang, H.; Mu, R.; Zhang, Y.; Tan, D.; Bao, X. Tailoring the growth of graphene on Ru(0001) via engineering of the substrate surface. J. Phys. Chem. C 2012, 116, 2988–2993.

34

Wang, Z.; Fu, Q.; Bao, X. Effect of substrate surface reconstruction on interaction with adsorbates: Pt on 6H-SiC(0001). Langmuir 2010, 26, 7227–7232.

35

Tersoff, J.; Hamann, D. R. Theory and application for the scanning tunneling microscope. Phys. Rev. Lett. 1983, 50, 1998–2001.

36

Emtsev, K. V.; Speck, F.; Seyller, T.; Ley, L.; Riley, J. D. Interaction, growth, and ordering of epitaxial graphene on SiC{0001} surfaces: A comparative photoelectron spectroscopy study. Phys. Rev. B 2008, 77, 155303.

37

Bozso, F.; Avouris, P. Photoemission studies of the reactions of ammonia and N atoms with Si(100)-(2×1) and Si(111)-(7×7) surfaces. Phys. Rev. B 1988, 38, 3937–3942.

38

Peden, C. H. F.; Rogers, J. W.; Shinn, N. D.; Kidd, K. B.; Tsang, K. L. Thermally grown Si3N4 thin films on Si(100): Surface and interfacial composition. Phys. Rev. B 1993, 47, 15622–15629.

39

King, S. W.; Davis, R. F.; Nemanich, R. J. Hydrogen desorption kinetics and band bending for 6H-SiC(0001) surfaces. Surf. Sci. 2009, 603, 3104–3118.

40

Lüth, H. Solid Surfaces, Interfaces, and Thin Films, 5th ed.; Springer-Verlag Berlin Heidelberg: New York, NY, 2010.

41

Chai, J. W.; Pan, J. S.; Zhang, Z.; Wang, S. J.; Chen, Q.; Huan, C. H. A. X-ray photoelectron spectroscopy studies of nitridation on 4H-SiC(0001) surface by direct nitrogen atomic source. Appl. Phys. Lett. 2008, 92, 092119.

42

Gao, T.; Gao, Y.; Chang, C.; Chen, Y.; Liu, M.; Xie, S.; He, K.; Ma, X.; Zhang, Y.; Liu, Z. Atomic-scale morphology and electronic structure of manganese atomic layers underneath epitaxial graphene on SiC(0001). ACS Nano 2012, 6, 6562–6568.

43

Watcharinyanon, S.; Virojanadara, C.; Osiecki, J. R.; Zakharov, A. A.; Yakimova, R.; Uhrberg, R. I. G.; Johansson, L. I. Hydrogen intercalation of graphene grown on 6H-SiC(0001). Surf. Sci. 2011, 605, 1662–1668.

44

Mallet, P.; Varchon, F.; Naud, C.; Magaud, L.; Berger, C.; Veuillen, J. -Y. Electron states of mono- and bilayer graphene on SiC probed by scanning-tunneling microscopy. Phys. Rev. B 2007, 76, 041403(R).

45

Lauffer, P.; Emtsev, K. V.; Graupner, R.; Seyller, T.; Ley, L.; Reshanov, S. A.; Weber, H. B. Atomic and electronic structure of few-layer graphene on SiC(0001) studied with scanning tunneling microscopy and spectroscopy. Phys. Rev. B 2008, 77, 155426.

46

Huang, H.; Chen, W.; Chen, S.; Wee, A. T. S. Bottom-up growth of epitaxial graphene on 6H-SiC(0001). ACS Nano 2008, 2, 2513–2518.

47

Deng, D.; Pan, X.; Yu, L.; Cui, Y.; Jiang, Y.; Qi, J.; Li, W. -X.; Fu, Q.; Ma, X.; Xue, Q.; et al. Toward N-doped graphene via solvothermal synthesis. Chem. Mater. 2011, 23, 1188–1193.

48

Zhao, L.; He, R.; Rim, K. T.; Schiros, T.; Kim, K. S.; Zhou, H.; Gutiérrez, C.; Chockalingam, S. P.; Arguello, C. J.; Pálová, L.; et al. Visualizing individual nitrogen dopants in monolayer graphene. Science 2011, 333, 999–1003.

Nano Research
Pages 399-408
Cite this article:
Wang Z-j, Wei M, Jin L, et al. Simultaneous N-intercalation and N-doping of epitaxial graphene on 6H-SiC(0001) through thermal reactions with ammonia. Nano Research, 2013, 6(6): 399-408. https://doi.org/10.1007/s12274-013-0317-7
Metrics & Citations  
Article History
Copyright
Return