AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Durable, superhydrophobic, antireflection, and low haze glass surfaces using scalable metal dewetting nanostructuring

Daniel Infante1Karl W. Koch3Prantik Mazumder3Lili Tian3Albert Carrilero1Domenico Tulli1David Baker3Valerio Pruneri1,2( )
ICFO-Institut de Ciències FotòniquesAv. Carl Friedrich Gauss, 3, 08860Castelldefels, BarcelonaSpain
ICREA-Institució Catalana de Recerca i Estudis AvançatsPasseig Lluís Companys, 23, 08010BarcelonaSpain
Corning IncorporatedSullivan ParkCorningNY14831USA
Show Author Information

Graphical Abstract

Abstract

In this paper we report a multifunctional nanostructured surface on glass that, for the first time, combines a wide range of optical, wetting and durability properties, including low omnidirectional reflectivity, low haze, high transmission, superhydrophobicity, oleophobicity, and high mechanical resistance. Nanostructures have been fabricated on a glass surface by reactive ion etching through a nanomask, which is formed by dewetting ultrathin metal films (< 10 nm thickness) subjected to rapid thermal annealing (RTA). The nanostructures strongly reduce the initial surface reflectivity (~4%), to less than 0.4% in the 390–800 nm wavelength range while keeping the haze at low values (< 0.9%). The corresponding water contact angle (θc) is ~24.5°, while that on a flat surface is ~43.5°. The hydrophilic wetting nanostructure can be changed into a superhydrophobic and oleophobic surface by applying a fluorosilane coating, which achieves contact angles for water and oil of ~156.3° and ~116.2°, respectively. The multicomponent composition of the substrate (Corning glass) enables ion exchange through the surface, so that the nanopillars' mechanical robustness increases, as is demonstrated by the negligible changes in surface morphology and optical performance after 5, 000-run wipe test. The geometry of the nanoparticles forming the nanomask depends on the metal material, initial metal thickness and RTA parameters. In particular we show that by simply changing the initial thickness of continuous Cu films we can tailor the metal nanoparticles' surface density and size. The developed surface nanostructuring does not require expensive lithography, thus it can be controlled and implemented on an industrial scale, which is crucial for applications.

Electronic Supplementary Material

Download File(s)
nr-6-6-429_ESM.pdf (1,015.8 KB)

References

1

Varghese, O. K.; Paulose, M.; Grimes, C. A. Long vertically aligned titania nanotubes on transparent conducting oxide for highly efficient solar cells. Nat. Nanotechnol. 2009, 4, 592–597.

2

Formica, N.; Ghosh, D. S.; Chen, T. L.; Eickhoff, C.; Bruder, I.; Pruneri, V. Highly stable Ag–Ni based transparent electrodes on pet substrates for flexible organic solar cells. Sol. Energ. Mat. Sol. C 2012, 107, 63–68.

3

Görrn, P.; Sander, M.; Meyer, J.; Kröger, M.; Becker, E.; Johannes, H. H.; Kowalsky, W.; Riedl, T. Towards see-through displays: Fully transparent thin-film transistors driving transparent organic light-emitting diodes. Adv. Mater. 2006, 18, 738–741.

4

Ren, H. W.; Fox, D. W.; Wu, B.; Wu, S. T. Liquid crystal lens with large focal length tunability and low operating voltage. Opt. Express 2007, 15, 11328–11335.

5

Cheylan, S.; Ghosh, D. S.; Krautz, D.; Chen, T. L.; Pruneri, V. Organic light-emitting diode with indium-free metallic bilayer as transparent anode. Org. Electron. 2011, 12, 818–822.

6

Li, Y. F.; Li, F.; Zhang, J. H.; Wang, C. L.; Zhu, S. J.; Yu, H. J.; Wang, Z. H.; Yang, B. Improved light extraction efficiency of white organic light-emitting devices by biomimetic antireflective surfaces. Appl. Phys. Lett. 2010, 96, 153305.

7

Tulli, D.; Janner, D.; Garcia-Granda, M.; Ricken, R.; Pruneri, V. Electrode-free optical sensor for high voltage using a domain-inverted lithium niobate waveguide near cut-off. Appl. Phys. B 2011, 103, 399–403.

8

Dannberg, P.; Erdmann, L.; Bierbaum, R.; Krehl, A.; Bräuer, A.; Kley, E. B. Micro-optical elements and their integration to glass and optoelectronic wafers. Microsyst. Technol. 1999, 6, 41–47.

9

Hecht, E. Interference. In Optics, 4th ed. Addison-Wesley: San Francisco, 2001; pp 428–431.

10

Lalanne, P.; Morris, G. M. Design, fabrication and characterization of subwavelength periodic structures for semiconductor anti-reflection coating in the visible domain. SPIE 1996, 2776, 300–309.

11

Guenther, K. H. Physical and chemical aspects in the application of thin films on optical elements. Appl. Optics 1984, 23, 3612–3632.

12

Parker, A. R.; Townley, H. E. Biomimetics of photonic nanostructures. Nat. Nanotechnol. 2007, 2, 347–353.

13

Chen, J. Y.; Chang, W. L.; Huang, C. K.; Sun, K. W. Biomimetic nanostructured antireflection coating and its application on crystalline silicon solar cells. Opt. Express 2011, 15, 14411–14419.

14

Gombert, A.; Glaubitt, W.; Rose, K.; Dreibholz, J.; Bläsi, B.; Heinzel, A.; Sporn, D.; Döll, W.; Wittwer, V. Subwavelength-structured antireflective surfaces on glass. Thin Solid Films 1999, 351, 73–78.

15

Min, W. L.; Jiang, B.; Jiang, P. Bioinspired self-cleaning antireflection coatings. Adv. Mater. 2008, 20, 3914–3918.

16

Li, Y. F.; Zhang, J. H. H.; Zhu, S. J.; Dong, H. P.; Jia, F.; Wang, Z. H.; Sun, Z. Q.; Zhang, L.; Li, Y.; Li, H. B.; Xu, W. Q.; Yang, B. Biomimetic surfaces for high-performance optics. Adv. Mater. 2009, 21, 4731–4734.

17

Zhu, J.; Hsu, C. M.; Yu, Z. F.; Fan, S. H.; Cui, Y. Nanodome solar cells with efficient light management and self-cleaning. Nano Lett. 2010, 10, 1979–1984.

18

Leem, J. W.; Yeh, Y.; Yu, J. S. Enhanced transmittance and hydrophilicity of nanostructured glass substrates with antireflective properties using disordered gold nanopatterns. Opt. Express 2012, 20, 4056–4066.

19

Lohmüller, T.; Helgert, M.; Sundermann, M.; Brunner, R.; Spatz, J. P. Biomimetic interfaces for high-performance optics in the deep-UV light range. Nano Lett. 2008, 8, 1429–1433.

20

Morhard, C.; Pacholski, C.; Brunner, R.; Helgert, M.; Lehr, D.; Spatz, J. Antireflective "moth-eye" structures fabricated by a cheap and versatile process on various optical elements. IEEE-NANO 2011, 116–121.

21

Hein, E.; Fox, D.; Fouckhardt, H. Lithography-free glass surface modification by self-masking during dry etching. J. Nanophotonics 2011, 5, 051703.

22

Bessonov, A.; Kim, J. G.; Seo, J. W.; Lee, J. W.; Lee, S. Design of patterned surfaces with selective wetting using nanoimprint lithography. Macromol. Chem. Phys. 2010, 211, 2636–2641.

23

Schulze, M.; Fuchs, H. J.; Kley, E. B.; Tünnermann, A. New approach for antireflective fused silica surfaces by statistical nanostructures. SPIE 2008, 6883, 68830N.

24

Camargo, K. C.; Michels, A. F.; Rodembusch, F. S.; Horowitz, F. Multi-scale structured, superhydrophobic and wide-angle, antireflective coating in the near-infrared region. Chem. Commun. 2012, 48, 4992–4994.

25

MacLeod, B. D.; Hobbs, D. S. Low-cost anti-reflection technology for automobile displays. In SID Vehicle Display conference, Canton, USA, 2004.

26

Park, K. C.; Choi, H. J.; Chang, C. H.; Cohen, R. E.; McKinleyand, G. H.; Barbastathis, G. Nanotextured silica surfaces with robust superhydrophobicity and omnidirectional broadband supertransmissivity. ACS Nano 2012, 6, 3789–3799.

27

Quéré, D. Wetting and roughness. Annu. Rev. Mater. Res. 2008, 38, 71–99.

28

Ganesh, V. A.; Raut, H. K.; Nair, A. S.; Ramakrishna, S. A review on self-cleaning coatings. J. Mater. Chem. 2011, 21, 16304–16322.

29

Hobbs, D. S.; MacLeod, B. D.; Kelsey, A. F.; Leclerc, M. A.; Sabatino III, E.; Resler, D. P. Automated interference lithography systems for generation of sub-micron feature size patterns. SPIE 1999, 3879, 124–135.

30

Chang, Y. M.; Shieh, J.; Juang, J. Y. Subwavelength antireflective Si nanostructures fabricated by using the self-assembled silver metal-nanomask. J. Phys. Chem. C 2011, 115, 8983–8987.

31

Lee, Y.; Koh, K.; Na, H.; Kim, K.; Kang, J. J.; Kim, J. Lithography-free fabrication of large area subwavelength antireflection structures using thermally dewetted Pt/Pd alloy etch mask. Nanoscale Res. Lett. 2009, 4, 364–370.

32
Dow Corning 2634 Coating Product Information Datasheet [Online]. http://www2.dowcorning.com/DataFiles/090007c880276ab9.pdf (accessed Apr 2, 2013)
33

Mochel, E. L. Mechanical strengthening of glass by ion exchange. U.S. Patent 3, 485, 702, Dec. 23, 1969.

34

Gentili, D.; Foschi, G.; Valle, F.; Cavallini, M.; Biscarini, F. Applications of dewetting in micro and nanotechnology. Chem. Soc. Rev. 2012, 41, 4430–4443.

35

Taflove, A.; Hagness, S. C. Computational Electrodynamics: The Finite-Difference Time-Domain Method; Artech House: Boston, 2000.

Nano Research
Pages 429-440
Cite this article:
Infante D, Koch KW, Mazumder P, et al. Durable, superhydrophobic, antireflection, and low haze glass surfaces using scalable metal dewetting nanostructuring. Nano Research, 2013, 6(6): 429-440. https://doi.org/10.1007/s12274-013-0320-z

681

Views

66

Crossref

N/A

Web of Science

72

Scopus

7

CSCD

Altmetrics

Received: 25 February 2013
Revised: 10 April 2013
Accepted: 12 April 2013
Published: 10 May 2013
© Tsinghua University Press and Springer-Verlag Berlin Heidelberg 2013
Return