AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Pentacene-based nanorods on Au(111) single crystals: Charge transfer, diffusion, and step-edge barriers

Sabine-Antonia Savu1Sabine Abb1,Simon Schundelmeier1Jonathan D. Saathoff2James M. Stevenson2Christina Tönshoff3Holger F. Bettinger3Paulette Clancy2M. Benedetta Casu1( )Thomas Chassé1
Institute of Physical and Theoretical ChemistryUniversity of TuebingenAuf der Morgenstelle 1872076Tuebingen, Germany
School of Chemical and Biomolecular EngineeringCornell UniversityIthacaNew York14853USA
Institute of Organic ChemistryUniversity of TuebingenAuf der Morgenstelle 1872076Tuebingen, Germany

Present address: Max-Planck-Institute for Solid State Research, Heisenbergstrasse 1, D-70569 Stuttgart, Germany

Show Author Information

Graphical Abstract

Abstract

We investigate nanorod assemblies of two δ4-substituted pentacenes, namely (2, 3-X2-9, 10-Y2)-substituted pentacenes with X = Y = OCH3 (MOP) and with X = F, Y = OCH3 (MOPF), grown on Au(111) single crystals. By using a multi-technique approach based on ultraviolet photoelectron spectroscopy, X-ray photoelectron spectroscopy, and X-ray absorption, we find evidence for charge transfer screening at the interface with gold. Furthermore, the MOP and MOPF nanorods show a rough surface morphology, which was investigated with atomic force microscopy. We use molecular simulation techniques to investigate the energetic barriers to diffusion and to traverse step-edges to estimate their influence on the nanorod roughness. We find that barriers to surface diffusion on a terrace are anisotropic and that their direction favors the formation of nanorods in these materials.

Electronic Supplementary Material

Download File(s)
nr-6-6-449_ESM.pdf (689.4 KB)

References

1

Tsumura, A.; Koezuka, H.; Ando, T. Macromolecular electronic device: Field-effect transistor with a polythiophene thin film. Appl. Phys. Lett. 1986, 49, 1210–1212.

2

Dimitrakopoulos, C. D.; Malenfant, P. R. L. Organic thin film transistors for large area electronics. Adv. Mater. 2002, 14, 99–117.

3

Braga, D.; Horowitz, G. High-performance organic field-effect transistors. Adv. Mater. 2009, 21, 1473–1486.

4

Tang, C. W.; VanSlyke S. A. Organic electroluminescent diodes. Appl. Phys. Lett. 1987, 51, 913–915.

5

Forrest, S. R. The road to high efficiency organic light emitting devices. Org. Electron. 2003, 4, 45–48.

6

Walzer, K.; Maenning, B.; Pfeiffer, M.; Leo, K. Highly efficient organic devices based on electrically doped transport layers. Chem. Rev. 2007, 107, 1233–1271.

7

Schmidt-Mende, L.; Watson, M.; Müllen, K.; Friend, R. H. Organic thin film photovoltaic devices from discotic materials. Mol. Cryst. Liq. Cryst. 2003, 396, 73–90.

8

Maennig, B.; Drechsel, J.; Gebeyehu, D.; Simon, P.; Kozlowski, F.; Werner, A.; Li, F.; Grundmann, S.; Sonntag, S.; Koch, M. et al. Organic p–i–n solar cells. Appl. Phys. A: Mater. 2004, 79, 1–14.

9

Riede, M.; Mueller, T.; Tress, W.; Schueppel, R.; Leo, K. Small-molecule solar cells—status and perspectives. Nanotechnology 2008, 19, 424001–424012.

10

Garnier, F.; Yassar, A.; Hajlaoui, R.; Horowitz, G.; Deloffre, F.; Servet, B.; Ries, S.; Alnot, P. Molecular engineering of organic semiconductors: Design of self-assembly properties in conjugated thiophene oligomers. J. Am. Chem. Soc. 1993, 115, 8716–8721.

11

Siegrist, T.; Kloc, C.; Schön, J. H.; Batlogg, B.; Haddon, R. C.; Berg, S.; Thomas, G. A. Enhanced physical properties in a pentacene polymorph. Angew. Chem. Int. Ed. 2001, 40, 1732–1736.

12

Lukas, S.; Witte, G.; Wöll, C. Novel mechanism for molecular self-assembly on metal substrates: Unidirectional rows of pentacene on Cu(110) produced by a substrate-mediated repulsion. Phys. Rev. Lett. 2002, 88, 28301.

13

Schroeder, P. G.; France, C. B.; Park, J. B.; Parkinson, B. A. Energy level alignment and two-dimensional structure of pentacene on Au(111) surfaces. J. Appl. Phys. 2002, 91, 3010–3014.

14

Casu, M. B.; Cosseddu, P.; Batchelor, D.; Bonfiglio, A.; Umbach, E. A high-resolution near-edge X-ray absorption fine structure investigation of the molecular orientation in the pentacene/poly(3, 4-ethylenedioxythiophene): poly(styrenesulfonate) pentacene/system. J. Chem. Phys. 2008, 128, 014705.

15

Klauk, H.; Halik, M.; Zschieschang, U.; Schmid, G.; Radlik, W.; Weber, W. High-mobility polymer gate dielectric pentacene thin film transistors. J. Appl. Phys. 2002, 92, 5259.

16

Horowitz, G. Organic field-effect transistors. Adv. Mater. 1998, 10, 365–377.

17

Lukas, S.; Söhnchen, S.; Witte, G.; Wöll, C. Epitaxial growth of pentacene films on metal surfaces. ChemPhysChem 2004, 5, 266–270.

18

Lee, S.; Koo, B.; Shin, J.; Lee, E.; Park, H.; Kim, H. Effects of hydroxyl groups in polymeric dielectrics on organic transistor performance. Appl. Phys. Lett. 2006, 88, 162109.

19

Anthony, J. E. Functionalized acenes and heteroacenes for organic electronics. Chem. Rev. 2006, 106, 5028–5048.

20

Sakamoto, Y.; Suzuki, T.; Kobayashi, M.; Gao, Y.; Fukai, Y.; Inoue, Y.; Sato, F.; Tokito, S. Perfluoropentacene: High-performance p−n junctions and complementary circuits with pentacene. J. Am. Chem. Soc. 2004, 126, 8138–8140.

21

Koch, N.; Vollmer, A.; Duhm, S.; Sakamoto, Y.; Suzuki, T. The effect of fluorination on pentacene/gold interface energetics and charge reorganization energy. Adv. Mater. 2007, 19, 112–116.

22

Hinderhofer, A.; Heinemeyer, U.; Gerlach, A.; Kowarik, S.; Jacobs, R. M. J.; Sakamoto, Y.; Suzuki, T.; Schreiber, F. Optical properties of pentacene and perfluoropentacene thin films. J. Chem. Phys. 2007, 127, 194705.

23

Tönshoff, C.; Bettinger, H. F. The influence of terminal push–pull substitution on the electronic structure and optical properties of pentacenes. Chem. Eur. J. 2012, 18, 1789–1799.

24

Savu, S. A.; Casu, M. B.; Schundelmeier, S.; Abb, S.; Tönshoff, C.; Bettinger, H. F.; Chassé, T. Nanoscale assembly, morphology and screening effects in nanorods of newly synthesized substituted pentacenes. RSC Adv. 2012, 2, 5112–5118.

25

Rocco, M. L. M.; Haeming, M.; Batchelor, D. R.; Fink, R.; Schöll, A.; Umbach, E. Electronic relaxation effects in condensed polyacenes: A high-resolution photoemission study. J. Chem. Phys. 2008, 129, 074702.

26

Zou, Y. Electronic properties of organic molecular thin films in condensed- and interfacial states with metal substrates. Ph. D. Dissertation, Julius-Maximilians University, Würzburg, Germany, 2003.

27

Petraki, F.; Peisert, H.; Biswas, I.; Chassé, T. Electronic structure of co-phthalocyanine on gold investigated by photoexcited electron spectroscopies: Indication of Co ion–metal interaction. J. Phys. Chem. C 2010, 114, 17638–17643.

28

Peisert, H.; Peterhans, A.; Chassé, T. Charge transfer and polarization screening at organic/metal interfaces: Distinguishing between the first layer and thin films. J. Phys. Chem. C 2008, 112, 5703–5706.

29

Ishii, H.; Sugiyama, K.; Ito, E.; Seki, K. Energy level alignment and interfacial electronic structures at organic/metal and organic/organic interfaces. Adv. Mater. 1999, 11, 605–625.

30

Koch, N. Energy levels at interfaces between metals and conjugated organic molecules. J. Phys. : Condens. Matter 2008, 20, 184008.

31

Stöhr, J.; Outka, D. A. Determination of molecular orientations on surfaces from the angular dependence of near-edge x-ray-absorption fine-structure spectra. Phys. Rev. B 1987, 36, 7891–7905.

32

Toyoda, K.; Hamada, I.; Yanagisawa, S.; Morikawa, Y. Density-functional theoretical study of fluorination effect on organic/metal interfaces. Org. Electron. 2011, 12, 295–299.

33

Gerlach, A.; Schreiber, F.; Sellner, S.; Dosch, H.; Vartanyants, I. A.; Cowie, B. C. C.; Lee, T. L.; Zegenhagen, J. Adsorption-induced distortion of F16CuPc on Cu(111) and Ag(111): An X-ray standing wave study. Phys. Rev. B 2005, 71, 205425.

34

Casu, M. B.; Biswas, I.; Nagel, M.; Nagel, P.; Schuppler, S.; Chassé, T. Photoemission electron microscopy of diindenoperylene thin films. Phys. Rev. B 2008, 78, 075310.

35

Casu, M. B.; Schöll, A.; Bauchspiess, K. R.; Hübner, D.; Schmidt, Th.; Heske, C.; Umbach, E. Nucleation in organic thin film growth: Perylene on Al2O3/Ni3Al(111). J. Phys. Chem. C 2009, 113, 10990–10996.

36

Duhm, S.; Heimel, G.; Salzmann, I.; Glowatzki, H.; Johnson, R. L.; Vollmer, A.; Rabe, J. P.; Koch, N. Orientation-dependent ionization energies and interface dipoles in ordered molecular assemblies. Nat. Mater. 2008, 7, 326–332.

37

Koch, N. Electronic structure of interfaces with conjugated organic materials. Phys. Status Solidi RRL 2012, 6, 277–293.

38

Casu, M. B.; Zou, Y.; Kera, S.; Batchelor, D.; Schmidt, Th.; Umbach, E. Investigation of polarization effects in organic thin films by surface core-level shifts. Phys. Rev. B 2007, 76, 193311.

39

Casu, M. B. Evidence for efficient screening in organic materials. Phys. Status Solidi RRL 2008, 2, 40–42.

40

Casu, M. B.; Savu, S. A.; Schuster, B. E.; Biswas, I.; Raisch, C.; Marchetto, H.; Schmidt, Th.; Chassé, T. Island shapes and aggregation steered by the geometry of the substrate lattice. Chem. Commun. 2012, 48, 6957–6959.

41

Ehrlich, G.; Hudda, F. G. Atomic view of surface self-diffusion: Tungsten on tungsten. J. Chem. Phys. 1966, 44, 1039–1049.

42

Schwoebel, R. L.; Shipsey, E. J. Step motion on crystal surfaces. J. Appl. Phys. 1966, 37, 3682–3686.

43

Allinger, N. L.; Yuh, Y. H.; Lii, J. H. Molecular mechanics. The MM3 force field for hydrocarbons. 1. J. Am. Chem. Soc. 1989, 111, 8551–8566.

44

Lii, J. H.; Allinger, N. L. Molecular mechanics. The MM3 force field for hydrocarbons. 2. Vibrational frequencies and thermodynamics. J. Am. Chem. Soc. 1989, 111, 8566–8575.

45

Lii, J. H.; Allinger, N. L. Molecular mechanics. The MM3 force field for hydrocarbons. 3. The van der Waals' potentials and crystal data for aliphatic and aromatic hydrocarbons. J. Am. Chem. Soc. 1989, 111, 8576–8582.

46

Miao, Q.; Lefenfeld, M.; Nguyen, T. Q.; Siegrist, T.; Kloc, C.; Nuckolls, C. Self-assembly and electronics of dipolar linear acenes. Adv. Mater. 2005, 17, 407–412.

47

Goose, J. E.; First, E. L.; Clancy, P. Nature of step-edge barriers for small organic molecules. Phys. Rev. B 2010, 81, 205310.

48

Häming, M.; Schöll, A.; Umbach, E.; Reinert, F. Adsorbate-substrate charge transfer and electron-hole correlation at adsorbate/metal interfaces. Phys. Rev. B 2012, 85, 235132.

49

Hesse, R.; Chassé, T.; Streubel, P.; Szargan, R. Error estimation in peak-shape analysis of XPS core-level spectra using UNIFIT 2003: How significant are the results of peak fits? Surf. Interface Anal. 2004, 36, 1373–1383.

50

Horcas, I.; Fernández, R.; Gómez-Rodriguez, J. M.; Colchero, J.; Gómez-Herrero, J.; Baro, A. M. WSXM: A software for scanning probe microscopy and a tool for nanotechnology. Rev. Sci. Instrum. 2007, 78, 013705.

Nano Research
Pages 449-459
Cite this article:
Savu S-A, Abb S, Schundelmeier S, et al. Pentacene-based nanorods on Au(111) single crystals: Charge transfer, diffusion, and step-edge barriers. Nano Research, 2013, 6(6): 449-459. https://doi.org/10.1007/s12274-013-0322-x

611

Views

14

Crossref

N/A

Web of Science

14

Scopus

0

CSCD

Altmetrics

Received: 21 March 2013
Accepted: 15 April 2013
Published: 08 May 2013
© Tsinghua University Press and Springer-Verlag Berlin Heidelberg 2013
Return