AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Optical haze of transparent and conductive silver nanowire films

Colin Preston1Yunlu Xu2,3Xiaogang Han1Jeremy N. Munday2,3Liangbing Hu1( )
Department of Materials Science and EngineeringUniversity of Maryland College ParkCollege ParkMaryland20742USA
Department of Electrical and Computer EngineeringUniversity of MarylandCollege ParkMaryland20742USA
The Institute for Research in Electronics and Applied PhysicsUniversity of MarylandCollege ParkMaryland20742USA
Show Author Information

Graphical Abstract

Abstract

Contemporary nanostructured transparent electrodes for use in solar cells require high transmittance and high conductivity, dictating nanostructures with high aspect ratios. Optical haze is an equally important yet unstudied parameter in transparent electrodes for solar cells that is also determined by the geometry of the nanostructures that compose the electrode. In this work, the effect of the silver nanowire diameter on the optical haze values in the visible spectrum was investigated using films composed of wires with either small diameters (~60 nm) or large diameters (~150 nm). Finite difference time domain (FDTD) simulations and experimental transmittance data confirm that smaller diameter nanowires form higher performing transparent conducting electrode (TCE) films according to the current figure of merit. While maintaining near constant transmittance and conductivity for each film, however, it was observed experimentally that films composed of silver nanowires with larger diameters have a higher haze factor than films with smaller diameters. This confirms the FDTD simulations of the haze factor for single nanowires with similarly large and small diameters. This is the first record of haze properties for Ag NWs that have been simulated or experimentally measured, and also the first evidence that the current figure of merit for TCEs is insufficient to evaluate their performance in solar cell devices.

Electronic Supplementary Material

Download File(s)
nr-6-7-461_ESM.pdf (419.3 KB)

References

1

Bach, U.; Lupo, D.; Comte, P.; Moser, J. E.; Weissortel, F.; Salbeck, J.; Spreitzer, H.; Gratzel, M. Solid-state dye-sensitized mesoporous TiO2 solar cells with high photon-to-electron conversion efficiencies. Nature 1998, 395, 583-585.

2

De, S.; Higgins, T. M.; Lyons, P. E.; Doherty, E. M.; Nimalraj, P. N.; Blau, W. J.; Boland, J. J.; Coleman, J. N. Silver nanowire networks as flexible, transparent, conducting films: Extremely high DC to optical conductivity ratios. ACS Nano 2009, 3, 1767-1774.

3

Kumar, A.; Zhou, C. The race to replace tin-doped indium oxide: Which material will win? ACS Nano 2010, 4, 11-14.

4

Gruner, G. Carbon nanotube films for transparent and plastic electronics. J. Mater. Chem. 2006, 16, 3533-3539.

5

Wu, Z.; Chen, Z.; Du, X.; Logan, J. M.; Sippel, J.; Nikolou, M.; Kamaras, K.; Reynolds, J. R.; Tanner, D. B.; Hebard, A. F.; Rinzler, A. G. Transparent conductive carbon nanotube films. Science 2004, 305, 1273-1276.

6

Zhang, M.; Fang, S.; Zakhidov, A. A.; Lee, S. B.; Aliev, A. E.; Williams, C. D.; Atkinson, K. R.; Baughman, R. H. Strong, transparent, multifunctional, carbon nanotube sheets. Science 2005, 309, 1215-1219.

7

Hu, L.; Hecht, D. S.; Gruner, G. Percolation in transparent and conducting carbon nanotube networks. Nano Lett. 2004, 4, 2513-2517.

8

Kim, K. S.; Zhao, Y.; Jang, H.; Lee, S. Y.; Kim, J. M.; Kim, K. S.; Ahn, J. H.; Kim, P.; Choi, J. Y.; Hong, B. H. Large-scale pattern growth of graphene films for stretchable transparent electrodes. Nature 2009, 457, 706-710.

9

Geim, A. K.; Novoselov, K. S. The rise of graphene. Nat. Mater. 2007, 6, 183-191.

10

Eda, G.; Fanchini, G.; Chhowalla, M. Large-area ultrathin films of reduced graphene oxide as a transparent and flexible material. Nat. Nanotechnol. 2008, 3, 270-274.

11

Liu, C. -H.; Yu, X. Silver nanowire-based transparent, flexible, and conductive thin film. Nanoscale Res. Lett. 2011, 6, 75.

12

Madaria, A. R.; Kumar, A.; Ishikawa, F. N.; Zhou, C. W. Uniform, highly conductive, and patterned transparent films of a percolating silver nanowire network on rigid and flexible substrates using a dry transfer technique. Nano. Res. 2010, 3, 564-573.

13

Van de Groep, J.; Spinelli, P.; Polman, A. Transparent conducting silver nanowire networks. Nano Lett. 2012, 12, 3138-3144.

14

Wu, H.; Hu, L. B.; Rowell, M. W.; Kong, D. S.; Cha, J. J.; McDonough, J. R.; Zhu, J.; Yang, Y. A.; McGehee, M. D.; Cui, Y. Electrospun metal nanofiber webs as high-performance transparent electrode. Nano Lett. 2010, 10, 4242-4248.

15

Ebbesen, T. W.; Lezec, H. J.; Hiura, H.; Bennett, J. W.; Ghaemi, H. F.; Thio, T. Electrical conductivity of individual carbon nanotubes. Nature 1996, 382, 54-56.

16

Hu, L. B.; Kim, H. S.; Lee, J. Y.; Peumans, P.; Cui, Y. Scalable coating and properties of transparent, flexible, silver nanowire electrodes. ACS Nano 2010, 4, 2955-2963.

17

Rowell, M. W.; Topinka, M. A.; McGehee, M. D.; Prall, H. J.; Dennler, G.; Sariciftci, N. S.; Hu, L. B.; Gruner, G. Organic solar cells with carbon nanotube network electrodes. Appl. Phys. Lett. 2006, 88, 233506.

18

Li, X. S.; Zhu, Y. W.; Cai, W. W.; Borysiak, M.; Han, B. Y.; Chen, D.; Piner, R. D.; Colombo, L.; Ruoff, R. S. Transfer of large-area graphene films for high-performance transparent conductive electrodes. Nano Lett. 2009, 9, 4359-4363.

19

Hecht, D. S.; Hu, L. B.; Irvin, G. Emerging transparent electrodes based on thin films of carbon nanotubes, graphene, and metallic nanostructures. Adv. Mater. 2011, 23, 1482-1513.

20

Kang, M. G.; Kim, M. S.; Kim, J. S.; Guo, L. J. Organic solar cells using nanoimprinted transparent metal electrodes. Adv. Mater. 2008, 20, 4408-4413.

21

Lee, P.; Lee, J.; Lee, H.; Yeo, J.; Hong, S.; Nam, K. H.; Lee, D.; Lee, S. S.; Ko, S. H. Highly stretchable and highly conductive metal electrode by very long metal nanowire percolation network. Adv. Mater. 2012, 24, 3326-3332.

22

Sun, Y. G. Silver nanowires-unique templates for functional nanostructures. Nanoscale 2010, 2, 1626-1642.

23

Lee, J. Y.; Connor, S. T.; Cui, Y.; Peumans, P. Solution-processed metal nanowire mesh transparent electrodes. Nano Lett. 2008, 8, 689-692.

24

Bergin, S. M.; Chen, Y. H.; Rathmell, A. R.; Charbonneau, P.; Li, Z. Y.; Wiley, B. J. The effect of nanowire length and diameter on the properties of transparent, conducting nanowire films. Nanoscale 2012, 4, 1996-2004.

25

Yang, Y.; Wang, L.; Yan, H.; Jin, S.; Marks, T. J. Highly transparent and conductive double-layer oxide thin films as anodes for organic light-emitting diodes. Appl. Phys. Lett. 2006, 89, 051116.

26

Muskens, O. L.; Rivas, J. G.; Algra, R. E.; Bakkers, E. P. A. M.; Lagendijk, A. Design of light scattering in nanowire materials for photovoltaic applications. Nano Lett. 2008, 8, 2638-2642.

27

Van de Hulst, H. C. Light Scattering by Small Particles; John Wiley & Sons, Inc. : New York, 1957.

28

Luk'yanchuk, B. S.; Tribelsky, M. I.; Ternovsky, V.; Wang, Z. B.; Hong, M. H.; Shi, L. P.; Chong, T. C. Peculiarities of light scattering by nanoparticles and nanowires near plasmon resonance frequencies in weakly dissipating materials. J. Opt. A: Pure Appl. Opt. 2007, 9, S294-S300.

29

Oliva, J. M.; Gray, S. K. A computational study of the interaction of light with silver nanowires of different eccentricity. Chem. Phys. Lett. 2006, 427, 383-389.

30

Giannini, V.; Sanchez-Gil, J. A. Calculations of light scattering from isolated and interacting metallic nanowires of arbitrary cross section by means of Green's theorem surface integral equations in parametric form. J. Opt. Soc. Am. A 2007, 24, 2822-2830.

31

Catrysse, P. B.; Fan, S. H. Nanopatterned metallic films for use as transparent conductive electrodes in optoelectronic devices. Nano Lett. 2010, 10, 2944-2949.

32

Spinelli, P.; Hebbink, M.; de Waele, R.; Black, L.; Lenzmann, F.; Polman, A. Optical impedance matching using coupled plasmonic nanoparticle arrays. Nano Lett. 2011, 11, 1760-1765.

33

De, S.; King, P. J.; Lyons, P. E.; Khan, U.; Coleman, J. N. Size effects and the problem with percolation in nanostructured transparent conductors. ACS Nano 2010, 4, 7064-7072.

34

Critchley, K.; Khanal, B. P.; Górzny, M. L.; Vigderman, L.; Evans, S. D.; Zubarev, E. R.; Kotov, N. A. Near-bulk conductivity of gold nanowires as nanoscale interconnects and the role of atomically smooth interface. Adv. Mater. 2010, 22, 2338-2342.

35

Xia, Y. N.; Yang, P. D.; Sun, Y. G.; Wu, Y. Y.; Mayers, B.; Gates, B.; Yin, Y. D.; Kim, F.; Yan, Y. Q.; One-dimensional nanostructures: Synthesis, characterization, and applications. Adv. Mater. 2003, 15, 353-389.

Nano Research
Pages 461-468
Cite this article:
Preston C, Xu Y, Han X, et al. Optical haze of transparent and conductive silver nanowire films. Nano Research, 2013, 6(7): 461-468. https://doi.org/10.1007/s12274-013-0323-9

800

Views

173

Crossref

N/A

Web of Science

178

Scopus

11

CSCD

Altmetrics

Received: 01 March 2013
Accepted: 15 April 2013
Published: 21 May 2013
© Tsinghua University Press and Springer-Verlag Berlin Heidelberg 2013
Return