AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Size and shape control of LiFePO4 nanocrystals for better lithium ion battery cathode materials

Caiyun NanJun LuLihong LiLingling LiQing Peng( )Yadong Li( )
Department of ChemistryState Key Laboratory of Low-Dimensional Quantum PhysicsTsinghua UniversityBeijing100084China
Show Author Information

Graphical Abstract

Abstract

Lithium iron phosphate (LiFePO4) is a potential high efficiency cathode material for lithium ion batteries, but the low electronic conductivity and single diffusion channel for lithium ions require good particle size and shape control during the synthesis of this material. In this paper, six LiFePO4 nanocrystals with different size and shape have been successfully synthesized in ethylene glycol. The addition sequence Fe-PO4-Li helps to form LiFePO4 nanocrystals with mostly {010} faces exposed, and increasing the amount of LiOH leads to a decrease in particle size. The electrochemical performance of the six distinct LiFePO4 particles show that the most promising LiFePO4 nanocrystals either have predominant {010} face exposure or high specific area, with little iron(Ⅱ) oxidation.

References

1

Dresselhaus, M. S.; Thomas, I. L. Alternative energy technologies. Nature 2001, 414, 332-337.

2

Puntes, V. F.; Krishnan, K. M.; Alivisatos, A. P. Colloidal nanocrystal shape and size control: The case of cobalt. Science 2001, 291, 2115-2117.

3

Arico, A. S.; Bruce, P.; Scrosati, B.; Tarascon, J. M.; van Schalkwijk, W. Nanostructured materials for advanced energy conversion and storage devices. Nat. Mater. 2005, 4, 366-377.

4

Habas, S. E.; Lee, H.; Radmilovic, V.; Somorjai, G. A.; Yang, P. D. Shaping binary metal nanocrystals through epitaxial seeded growth. Nat. Mater. 2007, 6, 692-697.

5

Chen, C.; Nan, C. Y.; Wang, D. S.; Su, Q.; Duan, H. H.; Liu, X. W.; Zhang, L. S.; Chu, D. R.; Song, W. G.; Peng, Q.; Li, Y. D. Mesoporous multicomponent nanocomposite colloidal spheres: Ideal high-temperature stable model catalysts. Angew. Chem. Int. Ed. 2011, 50, 3725-3729.

6

Poizot, P.; Laruelle, S.; Grugeon, S.; Dupont, L.; Tarascon, J. M. Nano-sized transition-metal oxides as negative-electrode materials for lithium-ion batteries. Nature 2000, 407, 496-499.

7

Bruce, P. G.; Scrosati, B.; Tarascon, J. M. Nanomaterials for rechargeable lithium batteries. Angew. Chem. Int. Ed. 2008, 47, 2930-2946.

8

Chen, J.; Cheng, F. Y. Combination of lightweight elements and nanostructured materials for batteries. Acc. Chem. Res. 2009, 42, 713-723.

9

Xiao, X. L.; Lu, J.; Li, Y. D. LiMn2O4 microspheres: Synthesis, characterization and use as a cathode in lithium ion batteries. Nano Res. 2010, 3, 733-737.

10

Lu, J.; Peng, Q.; Wang, W. Y.; Nan, C. Y.; Li, L. H.; Li, Y. D. Nanoscale coating of LiMO2 (M = Ni, Co, Mn) nanobelts with Li+-conductive Li2TiO3: Toward better rate capabilities for li-ion batteries. J. Am. Chem. Soc. 2013, 135, 1649-1652.

11

Yamada, A.; Chung, S. C.; Hinokuma, K. Optimized LiFePO4 for lithium battery cathodes. J. Electrochem. Soc. 2001, 148, A224-A229.

12

Yang, S. F.; Song, Y. N.; Zavalij, P. Y.; Stanley Whittingham, M. Reactivity, stability and electrochemical behavior of lithium iron phosphates. Electrochem. Commun. 2002, 4, 239-244.

13

Wang, Y. G.; Wang, Y. R.; Hosono, E.; Wang, K. X.; Zhou, H. S. The design of a LiFePO4/carbon nanocomposite with a core-shell structure and its synthesis by an in situ polymerization restriction method. Angew. Chem. Int. Ed. 2008, 47, 7461-7465.

14

Huang, Y. H.; Goodenough, J. B. High-rate LiFePO4 lithium rechargeable battery promoted by electrochemically active polymers. Chem. Mater. 2008, 20, 7237-7241.

15

Li, C. S.; Zhang, S. Y.; Cheng, F. Y.; Ji, W. Q.; Chen, J. Porous LiFePO4/NiP composite nanospheres as the cathode materials in rechargeable lithium-ion batteries. Nano Res. 2008, 1, 242-248.

16

Sun, C. W.; Rajasekhara, S.; Goodenough, J. B.; Zhou, F. Monodisperse porous LiFePO4 microspheres for a high power Li-ion battery cathode. J. Am. Chem. Soc. 2011, 133, 2132-2135.

17

Lu, Z. G.; Chen, H. L.; Robert, R.; Zhu, B. Y. X.; Deng, J. Q.; Wu, L. J.; Chung, C. Y.; Grey, C. P. Citric acid- and ammonium-mediated morphological transformations of olivine LiFePO4 particles. Chem. Mater. 2011, 23, 2848-2859.

18

Zhu, C. B.; Yu, Y.; Gu, L.; Weichert, K.; Maier, J. Electrospinning of highly electroactive carbon-coated single-crystalline LiFePO4 nanowires. Angew. Chem. Int. Ed. 2011, 50, 6278-6282.

19

Lim, J.; Mathew, V.; Kim, K.; Moon, J.; Kim, J. One-pot synthesis of multi-morphous LiFePO4 nanoparticles in polyol medium. J. Electrochem. Soc. 2011, 158, A736-A740.

20

Ellis, B.; Kan, W. H.; Makahnouk, W. R. M.; Nazar, L. F. Synthesis of nanocrystals and morphology control of hydrothermally prepared LiFePO4. J. Mater. Chem. 2007, 17, 3248-3254.

21

Zhang, W. J. Structure and performance of LiFePO4 cathode materials: A review. J. Power Sources 2011, 196, 2962-2970.

22

Recham, N.; Dupont, L.; Courty, M.; Djellab, K.; Larcher, D.; Armand, M.; Tarascon, J. M. Ionothermal synthesis of tailor-made LiFePO4 powders for Li-ion battery applications. Chem. Mater. 2009, 21, 1096-1107.

23

Morgan, D.; van der Ven, A.; Ceder, G. Li conductivity in LixMPO4 (M = Mn, Fe, Co, Ni) olivine materials. Electrochem. Solid-State Lett. 2004, 7, A30-A32.

24

Fisher, C. A. J.; Islam, M. S. Surface structures and crystal morphologies of LiFePO4: Relevance to electrochemical behaviour. J. Mater. Chem. 2008, 18, 1209-1215.

25

Ramana, C. V.; Mauger, A.; Gendron, F.; Julien, C. M.; Zaghib, K. Study of the Li-insertion/extraction process in LiFePO4/FePO4. J. Power Sources 2009, 187, 555-564.

26

Malik, R.; Burch, D.; Bazant, M.; Ceder, G. Particle size dependence of the ionic diffusivity. Nano Lett. 2010, 10, 4123-4127.

27

Wang, L.; He, X. M.; Sun, W. T.; Wang, J. L.; Li, Y. D.; Fan, S. S. Crystal orientation tuning of LiFePO4 nanoplates for high rate lithium battery cathode materials. Nano Lett. 2012, 12, 5632-5636.

28

Nan, C. Y.; Lu, J.; Chen, C.; Peng, Q.; Li, Y. D. Solvothermal synthesis of lithium iron phosphate nanoplates. J. Mater. Chem. 2011, 21, 9994-9996.

29

Zaiser, E. M.; La Mer, V. K. The kinetics of the formation and growth of monodispersed sulfur hydrosols. J. Colloid Sci. 1948, 3, 571-598.

30

Castro, L.; Dedryvere, R.; Ledeuil, J. B.; Bréger, J.; Tessier, C.; Gonbeau, D. Aging mechanisms of LiFePO4//graphite cells studied by XPS: Redox reaction and electrode/electrolyte interfaces. J. Electrochem. Soc. 2012, 159, A357-A363.

31

Hamelet, S.; Gibot, P.; Casas-Cabanas, M.; Bonnin, D.; Grey, C. P.; Cabana, J.; Leriche, J. B.; Rodriguez-Carvajal, J.; Courty, M.; Levasseur, S.; Carlach, P.; Van Thournout, M.; Tarascon, J. M.; Masquelier, C. The effects of moderate thermal treatments under air on LiFePO4-based nano powders. J. Mater. Chem. 2009, 19, 3979-3991.

32

Franger, S.; Le Cras, F.; Bourbon, C.; Rouault, H. LiFePO4 synthesis routes for enhanced electrochemical performance. Electrochem. Solid-State Lett. 2002, 5, A231-A233.

33

Dominko, R.; Bele, M.; Gaberscek, M.; Remskar, M.; Hanzel, D.; Pejovnik, S.; Jamnik, J. Impact of the carbon coating thickness on the electrochemical performance of LiFePO4/C composites. J. Electrochem. Soc. 2005, 152, A607-A610.

Nano Research
Pages 469-477
Cite this article:
Nan C, Lu J, Li L, et al. Size and shape control of LiFePO4 nanocrystals for better lithium ion battery cathode materials. Nano Research, 2013, 6(7): 469-477. https://doi.org/10.1007/s12274-013-0324-8

848

Views

130

Crossref

N/A

Web of Science

136

Scopus

14

CSCD

Altmetrics

Received: 18 March 2012
Revised: 15 April 2013
Accepted: 16 April 2013
Published: 10 May 2013
© Tsinghua University Press and Springer-Verlag Berlin Heidelberg 2013
Return