AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Graphene-based Li-ion hybrid supercapacitors with ultrahigh performance

Kai LengFan ZhangLong ZhangTengfei ZhangYingpeng WuYanhong LuYi HuangYongsheng Chen( )
Key Laboratory of Functional Polymer Materials and Centre for Nanoscale Science and Technology Institute of Polymer Chemistry College of Chemistry Nankai UniversityTianjin 300071 China
Show Author Information

Graphical Abstract

Abstract

There is a growing demand for hybrid supercapacitor systems to overcome the energy density limitation of existing-generation electric double layer capacitors (EDLCs), leading to next generation-Ⅱ supercapacitors with minimum sacrifice in power density and cycle life. Here, an advanced graphene-based hybrid system, consisting of a graphene-inserted Li4Ti5O12 (LTO) composite anode (G–LTO) and a three-dimensional porous graphene–sucrose cathode, has been fabricated for the purpose of combining both the benefits of Li-ion batteries (energy source) and supercapacitors (power source). Graphene-based materials play a vital role in both electrodes in respect of the high performance of the hybrid supercapacitor. For example, compared with the theoretical capacity of 175 mA·h·g–1 for pure LTO, the G–LTO nanocomposite delivered excellent reversible capacities of 207, 190, and 176 mA·h·g–1 at rates of 0.3, 0.5, and 1 C, respectively, in the potential range 1.0–2.5 V vs. Li/Li+; these are among the highest values for LTO-based nanocomposites at the same rates and potential range. Based on this, an optimized hybrid supercapacitor was fabricated following the standard industry procedure; this displayed an ultrahigh energy density of 95 Wh·kg–1 at a rate of 0.4 C (2.5 h) over a wide voltage range (0–3 V), and still retained an energy density of 32 Wh·kg–1 at a high rate of up to 100 C, equivalent to a full discharge in 36 s, which is exceptionally fast for hybrid supercapacitors. The excellent performance of this Li-ion hybrid supercapacitor indicates that graphene-based materials may indeed play a significant role in next-generation supercapacitors with excellent electrochemical performance.

Electronic Supplementary Material

Download File(s)
nr-6-8-581_ESM.pdf (613.3 KB)

References

1

Armand, M.; Tarascon, J. M. Building better batteries. Nature 2008, 451, 652–657.

2

Miller, J. R.; Simon, P. Electrochemical capacitors for energy management. Science 2008, 321, 651–652.

3

Simon, P.; Gogotsi, Y. Materials for electrochemical capacitors. Nat. Mater. 2008, 7, 845–854.

4

Tarascon, J. M.; Armand, M. Issues and challenges facing rechargeable lithium batteries. Nature 2001, 414, 359–367.

5

Du Pasquier, A.; Plitz, I.; Menocal, S.; Amatucci, G. A comparative study of Li-ion battery, supercapacitor and nonaqueous asymmetric hybrid devices for automotive applications. J. Power Sources 2003, 115, 171–178.

6

Pasquier, A. D.; Plitz, I.; Gural, J.; Badway, F.; Amatucci, G. G. Power-ion battery: Bridging the gap between Li-ion and supercapacitor chemistries. J. Power Sources 2004, 136, 160–170.

7

Liu, C.; Li, F.; Ma, L. P.; Cheng, H. M. Advanced materials for energy storage. Adv. Mater. 2010, 22, E28–E62.

8

Naoi, K.; Ishimoto, S.; Miyamoto, J. I.; Naoi, W. Second generation "nanohybrid supercapacitor": Evolution of capacitive energy storage devices. Energy Environ. Sci. 2012, 5, 9363–9373.

9

Burke, A. R & D considerations for the performance and application of electrochemical capacitors. Electrochim. Acta 2007, 53, 1083–1091.

10

Chen, F.; Li, R. G.; Hou, M.; Liu, L.; Wang, R.; Deng, Z. H. Preparation and characterization of rmsdellite Li2Ti3O7 as an anode material for asymmetric supercapacitors. Electrochim. Acta 2005, 51, 61–65.

11

Zheng, J. P. The limitations of energy density of battery/double-layer capacitor asymmetric cells. J. Electrochem. Soc. 2003, 150, A484–A492.

12

Wang, Y. G.; Xia, Y. Y. A new concept hybrid electrochemical surpercapacitor: Carbon/LiMn2O4 aqueous system. Electrochem. Commun. 2005, 7, 1138–1142.

13

Pell, W. G.; Conway, B. E. Peculiarities and requirements of asymmetric capacitor devices based on combination of capacitor and battery-type electrodes. J. Power Sources 2004, 136, 334–345.

14

Amatucci, G. G.; Badway, F.; Du Pasquier, A.; Zheng, T. An asymmetric hybrid nonaqueous energy storage cell. J. Electrochem. Soc. 2001, 148, A930–A939.

15

Ni, J. F.; Yang, L. X.; Wang, H. B.; Gao, L. J. A high-performance hybrid supercapacitor with Li4Ti5O12-C nano-composite prepared by in situ and ex situ carbon modification. J. Solid State Electrochem. 2012, 16, 2791–2796.

16

Wang, Q.; Wen, Z. H.; Li, J. H. A hybrid supercapacitor fabricated with a carbon nanotube cathode and a TiO2-B nanowire anode. Adv. Funct. Mater. 2006, 16, 2141–2146.

17

Cericola, D.; Novák, P.; Wokaun, A.; Kötz, R. Hybridization of electrochemical capacitors and rechargeable batteries: An experimental analysis of the different possible approaches utilizing activated carbon, Li4Ti5O12 and LiMn2O4. J. Power Sources 2011, 196, 10305–10313.

18

Li, H. Q.; Cheng, L.; Xia, Y. Y. A hybrid electrochemical supercapacitor based on a 5 V Li-ion battery cathode and active carbon. Electrochem. Solid-State Lett 2005, 8, A433–A436.

19

Chen, P. C.; Shen, G. Z.; Shi, Y.; Chen, H. T.; Zhou, C. W. Preparation and characterization of flexible asymmetric supercapacitors based on transition-metal-oxide nanowire/single-walled carbon nanotube hybrid thin-film electrodes. ACS Nano 2010, 4, 4403–4411.

20

Aricò, A. S.; Bruce, P.; Scrosati, B.; Tarascon, J. M.; van Schalkwijk, W. Nanostructured materials for advanced energy conversion and storage devices. Nat. Mater. 2005, 4, 366–377.

21

Chen, Z.; Augustyn, V.; Wen, J.; Zhang, Y. W.; Shen, M. Q.; Dunn, B.; Lu, Y. F. High-performance supercapacitors based on intertwined CNT/V2O5 nanowire nanocomposites. Adv. Mater. 2011, 23, 791–795.

22

Fan, Z. J.; Yan, J.; Zhi, L. J.; Zhang, Q.; Wei, T.; Feng, J.; Zhang, M. L.; Qian, W. Z.; Wei, F. A three-dimensional carbon nanotube/graphene sandwich and its application as electrode in supercapacitors. Adv. Mater. 2010, 22, 3723–3728.

23

Armstrong, G.; Armstrong, A. R.; Bruce, P. G.; Reale, P.; Scrosati, B. TiO2(B) Nanowires as an improved anode material for lithium-ion batteries containing LiFePO4 or LiNi0.5Mn1.5O4 cathodes and a polymer electrolyte. Adv. Mater. 2006, 18, 2597–2600.

24

Winter, M.; Besenhard, J. O. Electrochemical lithiation of tin and tin-based intermetallics and composites. Electrochim. Acta 1999, 45, 31–50.

25

Mukaibo, H.; Osaka, T.; Reale, P.; Panero, S.; Scrosati, B.; Wachtler, M. Optimized Sn/SnSb lithium storage materials. J. Power Sources 2004, 132, 225–228.

26

Bruce, P. G.; Scrosati, B.; Tarascon, J. M. Nanomaterials for rechargeable lithium batteries. Angew. Chem. Int. Ed. 2008, 47, 2930–2946.

27

Naoi, K.; Simon, P. New materials and new configurations for advanced electrochemical capacitors. Interface 2008, 17, 34–37.

28

Naoi, K. "Nanohybrid capacitor": The next generation electrochemical capacitors. Fuel Cells 2010, 10, 8254–833.

29

Park, K. S.; Benayad, A.; Kang, D. J.; Doo, S. G. Nitridation-driven conductive Li4Ti5O12 for lithium ion batteries. J. Am. Chem. Soc. 2008, 130, 14930–14931.

30

Wang, Y. G.; Liu, H. M.; Wang, K. X.; Eiji, H.; Wang, Y. R.; Zhou, H. S. Synthesis and electrochemical performance of nano-sized Li4Ti5O12 with double surface modification of Ti(Ⅲ) and carbon. J. Mater. Chem. 2009, 19, 6789–6795.

31

Sorensen, E. M.; Barry, S. J.; Jung, H. K.; Rondinelli, J. M.; Vaughey, J. T.; Poeppelmeier, K. R. Three-dimensionally ordered macroporous Li4Ti5O12: Effect of wall structure on electrochemical properties. Chem. Mater. 2005, 18, 482–489.

32

Yi, T. F.; Jiang, L. J.; Liu, J.; Ye, M. F.; Fang, H. B.; Zhou, A. N.; Shu, J. Structure and physical properties of Li4Ti5O12 synthesized at deoxidization atmosphere. Ionics 2011, 17, 799–803.

33

Cheng, L.; Yan, J.; Zhu, G. N.; Luo, J. Y.; Wang, C. X.; Xia, Y. Y. General synthesis of carbon-coated nanostructure Li4Ti5O12 as a high rate electrode material for Li-ion intercalation. J. Mater. Chem. 2010, 20, 595–602.

34

Wang, G. J.; Gao, J.; Fu, L. J.; Zhao, N. H.; Wu, Y. P.; Takamura, T. Preparation and characteristic of carbon-coated Li4Ti5O12 anode material. J. Power Sources 2007, 174, 1109–1112.

35

Jiang, C.; Ichihara, M.; Honma, I.; Zhou, H. S. Effect of particle dispersion on high rate performance of nano-sized Li4Ti5O12 anode. Electrochim. Acta 2007, 52, 6470–6475.

36

Huang, S. H.; Wen, Z. Y.; Zhu, X. J.; Lin, Z. X. Effects of dopant on the electrochemical performance of Li4Ti5O12 as electrode material for lithium ion batteries. J. Power Sources 2007, 165, 408–412.

37

Huang, S. H.; Wen, Z. Y.; Zhang, J. C.; Yang, X. L. Improving the electrochemical performance of Li4Ti5O12/Ag composite by an electroless deposition method. Electrochim. Acta 2007, 52, 3704–3708.

38

Li, J. R.; Tang, Z. L; Zhang, Z. T. Controllable formation and electrochemical properties of one-dimensional nanostructured spinel Li4Ti5O12. Electrochem. Commun. 2005, 7, 894–899.

39

Zheng, S. W.; Xu, Y. L.; Zhao, C. J.; Liu, H. K.; Qian, X. Z.; Wang, J. H. Synthesis of nano-sized Li4Ti5O12/C composite anode material with excellent high-rate performance. Mater. Lett. 2012, 68, 32–35.

40

Li, X.; Qu, M. Z.; Huai, Y. J.; Yu, Z. L. Preparation and electrochemical performance of Li4Ti5O12/carbon/carbon nano-tubes for lithium ion battery. Electrochim. Acta 2010, 55, 2978–2982.

41

Wang, Y.; Shi, Z. Q.; Huang, Y.; Ma, Y. F.; Wang, C. Y.; Chen, M. M.; Chen, Y. S. Supercapacitor devices based on graphene materials. J. Phys. Chem. C 2009, 113, 13103–13107.

42

Wang, Y.; Wu, Y. P.; Huang, Y.; Zhang, F.; Yang, X.; Ma, Y. F.; Chen, Y. S. Preventing graphene sheets from restacking for its high capacitance performance. J. Phys. Chem. C 2011, 115, 23192–23197.

43

Zhang, L.; Zhang, F.; Yang, X.; Long, G. K.; Wu, Y. P.; Zhang, T. F.; Leng, K.; Huang, Y.; Ma, Y. F.; Chen, Y. S. Porous 3D graphene-based bulk materials with exceptional high surface area and excellent conductivity for supercapacitors. Sci. Rep. 2013, 3, 1408–1417.

44

Li, C.; Shi, G. Three-dimensional graphene architectures. Nanoscale 2012, 4, 5549–5563.

45

Prosini, P. P.; Mancini, R.; Petrucci, L.; Contini, V.; Villano, P. Li4Ti5O12 as anode in all-solid-state, plastic, lithium-ion batteries for low-power applications. Solid State Ionics 2001, 144, 185–192.

46

Aldon, L.; Kubiak, P.; Womes, M.; Jumas, J. C.; Olivier-Fourcade, J.; Tirado, J. L.; Corredor, J. I.; Pérez Vicente, C. Chemical and electrochemical Li-insertion into the Li4Ti5O12 spinel. Chem. Mater. 2004, 16, 5721–5725.

47

Yan, J.; Wei, T.; Shao, B.; Fan, Z. J.; Qian, W. Z.; Zhang, M. L.; Wei, F. Preparation of a graphene nanosheet/polyaniline composite with high specific capacitance. Carbon 2010, 48, 487–493.

48

Hu, L. H.; Wu, F. Y.; Lin, C. T.; Khlobystov, A. N.; Li, L. J. Graphene-modified LiFePO4 cathode for lithium ion battery beyond theoretical capacity. Nat. Commun. 2013, 4, 687–1674.

49

Pan, D. Y.; Wang, S.; Zhao, B.; Wu, M. H.; Zhang, H. J.; Wang, Y.; Jiao, Z. Li storage properties of disordered graphene nanosheets. Chem. Mater. 2009, 21, 3136–3142.

50

Kitta, M.; Akita, T.; Maeda, Y.; Kohyama, M. Study of surface reaction of spinel Li4Ti5O12 during the first lithium insertion and extraction processes using atomic force microscopy and analytical transmission electron microscopy. Langmuir 2012, 28, 12384–12392.

51

Wang, G. X.; Wang, B.; Wang, X. L.; Park, J.; Dou, S.; Ahn, H.; Kim, K. Sn/graphene nanocomposite with 3D architecture for enhanced reversible lithium storage in lithium ion batteries. J. Mater. Chem. 2009, 19, 8378–8384.

52

Naoi, K.; Ishimoto, S.; Isobe, Y.; Aoyagi, S. High-rate nano-crystalline Li4Ti5O12 attached on carbon nano-fibers for hybrid supercapacitors. J. Power Sources 2010, 195, 6250–6254.

53

Tang, Y. F.; Yang, L.; Qiu, Z.; Huang, J. S. Preparation and electrochemical lithium storage of flower-like spinel Li4Ti5O12 consisting of nanosheets. Electrochem. Commun. 2008, 10, 1513–1516.

54

Zheng, C.; Qi, L.; Yoshio, M.; Wang, H. Y. Cooperation of micro- and meso-porous carbon electrode materials in electric double-layer capacitors. J. Power Sources 2010, 195, 4406–4409.

55

Qu, Q. T.; Li, L.; Tian, S.; Guo, W. L.; Wu, Y. P.; Holze, R. A cheap asymmetric supercapacitor with high energy at high power: Activated carbon//K0.27MnO2·0.6H2O. J. Power Sources 2010, 195, 2789–2794.

56

Khomenko, V.; Piñero, E. R.; Béguin, F. A new type of high energy asymmetric capacitor with nanoporous carbon electrodes in aqueous electrolyte. J. Power Sources 2010, 195, 42344241.

57

Wang, H. L.; Liang, Y. Y.; Mirfakhrai, T.; Chen, Z.; Casalongue, H.; Dai, H. J. Advanced asymmetrical supercapacitors based on graphene hybrid materials. Nano Res. 2011, 4, 729736.

58

Choi, H. S.; Im, J. H.; Kim, T.; Park, J. H.; Park, C. R. Advanced energy storage device: A hybrid BatCap system consisting of battery-supercapacitor hybrid electrodes based on Li4Ti5O12-activated-carbon hybrid nanotubes. J. Mater. Chem. 2012, 22, 16986–16993.

59

Gogotsi, Y.; Simon, P. True performance metrics in electrochemical energy storage. Science 2011, 334, 917–918.

60

Stoller, M. D.; Murali, S.; Quarles, N.; Zhu, Y. W.; Potts, J. R.; Zhu, X. J.; Ha, H. W.; Ruoff, R. S. Activated graphene as a cathode material for Li-ion hybrid supercapacitors. Phys. Chem. Chem. Phys. 2012, 14, 3388–3391.

61

Becerril, H. A.; Mao, J.; Liu, Z. F.; Stoltenberg, R. M.; Bao, Z. N.; Chen, Y. S. Evaluation of solution-processed reduced graphene oxide films as transparent conductors. ACS Nano 2008, 2, 463–470.

Nano Research
Pages 581-592
Cite this article:
Leng K, Zhang F, Zhang L, et al. Graphene-based Li-ion hybrid supercapacitors with ultrahigh performance. Nano Research, 2013, 6(8): 581-592. https://doi.org/10.1007/s12274-013-0334-6

722

Views

199

Crossref

N/A

Web of Science

210

Scopus

18

CSCD

Altmetrics

Received: 11 April 2013
Revised: 18 May 2013
Accepted: 19 May 2013
Published: 08 June 2013
© Tsinghua University Press and Springer-Verlag Berlin Heidelberg 2013
Return