Discover the SciOpen Platform and Achieve Your Research Goals with Ease.
Search articles, authors, keywords, DOl and etc.
Highly reliable and bendable dielectrics are desired in flexible or bendable electronic devices for future applications. Hexagonal boron nitride (h-BN) can be used as bendable dielectric due to its wide band gap. Here, we fabricate high quality h-BN films with controllable thickness by a low pressure chemical vapor deposition method. We demonstrate a parallel-plate capacitor using h-BN film as the dielectric. The h-BN capacitors are reliable with a high breakdown field strength of ~9.0 MV/cm. Tunneling current across the h-BN film is inversely exponential to the thickness of dielectric, which makes the capacitance drop significantly. The h-BN capacitor shows a best specific capacitance of 6.8 μF/cm2, which is one order of magnitude higher than the calculated value.
Xiao, X.; Li, T. Q.; Yang, P. H.; Gao, Y.; Jin, H. Y.; Ni, W. J.; Zhan, W. H.; Zhang, X. H.; Cao, Y. Z.; Zhong, J. W. et al. Fiber-based all-solid-state flexible supercapacitors for self-powered systems. ACS Nano 2012, 6, 9200–9206.
Yuan, L. Y.; Xiao, X.; Ding, T. P.; Zhong, J. W.; Zhang, X. H.; Shen, Y.; Hu, B.; Huang, Y. H.; Zhou, J.; Wang, Z. L. Paper-based supercapacitors for self-Powered nanosystems. Angew. Chem. Int. Ed. 2012, 51, 4934–4938.
Lipomi, D. J.; Vosgueritchian, M.; Tee, B.; Hellstrom, S. L.; Lee, J. A.; Fox, C. H.; Bao, Z. N. Skin-like pressure and strain sensors based on transparent elastic films of carbon nanotubes. Nat. Nanotechnol. 2011, 6, 788–792.
Forst, C. J.; Ashman, C. R.; Schwarz, K.; Blöchl, P. E. The interface between silicon and a high-k oxide. Nature 2004, 427, 53–56.
Sorel, S.; Khan, U.; Coleman, J. N. Flexible, transparent dielectric capacitors with nanostructured electrodes. Appl. Phys. Lett. 2012, 101, 10310610.
Zhou, Y.; Han, S. T.; Xu, Z. X.; Yang, X. B.; Ng, H. P.; Huang, L. B.; Roy, V. Functional high-k nanocomposite dielectrics for flexible transistors and inverters with excellent mechanical properties. J. Mater. Chem. 2012, 22, 14246–14253.
Gao, Y. W.; Gu, A. J.; Jiao, Y. C.; Yang, Y. L.; Liang, G. Z.; Hu, J. T.; Yao, W.; Yuan, L. High-performance hexagonal boron nitride/bismaleimide composites with high thermal conductivity, low coefficient of thermal expansion, and low dielectric loss. Polym. Adv. Technol. 2012, 23, 919–928.
Chen, X. L.; Cheng, Y. H.; Xie, X. J.; Feng, W. T.; Wu, K. Calculation of the ionic conductivity of h-BN and its effect on the dielectric loss. J. Phys. D: Appl. Phys. 2007, 40, 846–849.
Watanabe, K.; Taniguchi, T.; Kanda, H. Direct-bandgap properties and evidence for ultraviolet lasing of hexagonal boron nitride single crystal. Nat. Mater. 2004, 3, 404–409.
Song, L.; Ci, L. J.; Lu, H.; Sorokin, P. B.; Jin, C. H.; Ni, J.; Kvashnin, A. G.; Kvashnin, D. G.; Lou, J.; Yakobson, B. I. et al. Large scale growth and characterization of atomic hexagonal boron nitride layers. Nano Lett. 2010, 10, 3209–3215.
Lee, G. H.; Yu, Y. J.; Lee, C.; Dean, C.; Shepard, K. L.; Kim, P.; Hone, J. Electron tunneling through atomically flat and ultrathin hexagonal boron nitride. Appl. Phys. Lett. 2011, 99, 24311424.
Britnell, L.; Gorbachev, R. V.; Jalil, R.; Belle, B. D.; Schedin, F.; Katsnelson, M. I.; Eaves, L.; Morozov, S. V.; Mayorov, A. S.; Peres, N. M. R. et al. Electron tunneling through ultrathin boron nitride crystalline barriers. Nano Lett. 2012, 12, 1707–1710.
Shi, Y. M.; Hamsen, C.; Jia, X. T.; Kim, K. K.; Reina, A.; Hofmann, M.; Hsu, A. L.; Zhang, K.; Li, H. N.; Juang, Z. Y. et al. Synthesis of few-layer hexagonal boron nitride thin film by chemical vapor deposition. Nano Lett. 2010, 10, 4134–4139.
Ismach, A.; Chou, H.; Ferrer, D. A.; Wu, Y. P.; McDonnell, S.; Floresca, H. C.; Covacevich, A.; Pope, C.; Piner, R.; Kim, M. J. et al. Toward the controlled synthesis of hexagonal boron nitride films. ACS Nano 2012, 6, 6378–6385.
Lee, K. H.; Shin, H. J.; Lee, I. Y.; Kim, G. H.; Choi, J. Y.; Kim, S. W. Large-scale synthesis of high-quality hexagonal boron nitride nanosheets for large-area graphene electronics. Nano Lett. 2012, 12, 714–718.
Kim, K. K.; Hsu, A.; Jia, X. T.; Kim, S. M.; Shi, Y. M.; Dresselhaus, M.; Palacios, T.; Kong, J. Synthesis and characterization of hexagonal boron nitride film as a dielectric layer for graphene devices. ACS Nano 2012, 6, 8583–8590.
Sutter, P.; Lahiri, J.; Zahl, P.; Wang, B.; Sutter, E. Scalable synthesis of uniform few-layer hexagonal boron nitride dielectric films. Nano Lett. 2013, 13, 276–281.
Kim, G.; Jang, A. R.; Jeong, H. Y.; Lee, Z.; Kang, D. J.; Shin, H. S. Growth of high-crystalline, single-layer hexagonal boron nitride on recyclable platinum foil. Nano Lett. 2013, 13, 1834–1839.
Dean, C. R.; Young, A. F.; Meric, I.; Lee, C.; Wang, L.; Sorgenfrei, S.; Sorgenfrei, S.; Watanabe, K.; Taniguchi, T.; Kim, P. et al. Boron nitride substrates for high-quality graphene electronics. Nat. Nanotechnol. 2010, 5, 722–726.
Li, X. S.; Zhu, Y. W.; Cai, W. W.; Borysiak, M.; Han, B. Y.; Chen, D.; Piner, R. D.; Colombo, L.; Ruoff, R. S. Transfer of large-area graphene films for high-performance transparent conductive electrodes. Nano Lett. 2009, 9, 4359–4363.
Guo, N.; Wei, J. Q.; Fan, L. L.; Jia, Y.; Liang, D. Y.; Zhu, H. W.; Wang, K. L.; Wu, D. H. Controllable growth of triangular hexagonal boron nitride domains on copper foils by an improved low-pressure chemical vapor deposition method. Nanotechnology 2012, 23, 415605.
Huang, J. Y.; Yasuda, H.; Mori, H. HRTEM and EELS studies on the amorphization of hexagonal boron nitride induced by ball milling. J. Am. Ceram. Soc. 2000, 83, 403–409.
Geick, R.; Perry, C. H.; Rupprech, G. Normal modes in hexagonal boron nitride. Phys. Rev. 1966, 146, 543–547.
Park, K. S.; Lee, D. Y.; Kim, K. J.; Moon, D. W. Observation of a hexagonal BN surface layer on the cubic BN film grown by dual ion beam sputter deposition. Appl. Phys. Lett. 1997, 70, 315–317.
Tauc, J.; Grigorov, R.; Vancu, A. Optical properties and electronic structure of amorphous germanium. Phys. Stat. Sol. 1966, 15, 627–637.
Simmons, J. G. Electric tunnel effect between dissimilar electrodes separated by a thin insulating film. J. Appl. Phys. 1963, 34, 2581–2590.
Ando, A.; Hasunuma, R.; Maeda, T.; Sakamoto, K.; Miki, K.; Nishioka, Y.; Sakamoto, T. Conducting atomic force microscopy studies on local electrical properties of ultrathin SiO2 films. Appl. Surf. Sci. 2000, 162, 401–405.
Shelimov, K. B.; Davydov, D. N.; Moskovits, M. Template-grown high-density nanocapacitor arrays. Appl. Phys. Lett. 2000, 77, 1722–1724.
Banerjee, P.; Perez, I.; Henn-Lecordier, L.; Lee, S. B.; Rubloff, G. W. Nanotubular metal-insulator-metal capacitor arrays for energy storage. Nat. Nanotechnol. 2009, 4, 292–296.
Kemell, M.; Ritala, M.; Leskelä, M.; Ossei-Wusu, E.; Carstensen, J.; Föll, H. Si/Al2O3/ZnO: Al capacitor arrays formed in electrochemically etched porous Si by atomic layer deposition. Microelectron. Eng. 2007, 84, 313–318.