AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Graphene-induced Pd nanodendrites: A high performance hybrid nanoelectrocatalyst

Subash Chandra Sahu1Aneeya K. Samantara1Ajit Dash1R. R. Juluri2Ranjan K. Sahu3B. K. Mishra1Bikash Kumar Jena1( )
Colloids & Materials ChemistryCSIR-Institute of Minerals and Materials TechnologyBhubaneswar751013India
Institute of PhysicsBhubaneswar751005India
Materials Science and Technology DivisionNational Metallurgical LaboratoryJamshedpur831007India
Show Author Information

Graphical Abstract

Abstract

A facile and green approach has been developed for the in situ synthesis of hybrid nanomaterials based on dendrite-shaped Pd nanostructures supported on graphene (RG). The as-synthesized hybrid nanomaterials (RG-PdnDs) have been thoroughly characterized by high resolution transmission electron microscopy, X-ray photoelectron spectroscopy, atomic force microscopy, Raman spectroscopy and electrochemical techniques. The mechanism of formation of such dendrite-shaped Pd nanostructures on the graphene support has been elucidated using transmission electron microscopy (TEM) measurements. The RG induces the formation of, and plays a decisive role in shaping, the dendrite morphology of Pd nanostructures on its surface. Cyclic voltammetry and chronoamperometry techniques have been employed to evaluate the electrochemical performance of RG-PdnDs towards oxidation of methanol. The electrochemical (EC) activities of RG-PdnDs are compared with graphene-supported spherical-shaped Pd nanostructures, Pd nanodendrites alone and a commercial available Pd/C counterpart. The combined effect of the graphene support and the dendrite morphology of RG-PdnDs triggers the high electrocatalytic activity and results in robust tolerance to CO poisoning.

Electronic Supplementary Material

Download File(s)
nr-6-9-635_ESM.pdf (1.2 MB)

References

1

Debe, M. K. Electrocatalyst approaches and challenges for automotive fuel cells. Nature 2012, 486, 43-51.

2

Lim, B.; Jiang, M.; Camargo, P. H. C.; Cho, E. C.; Tao, J.; Lu, X.; Zhu, Y.; Xia, Y. Pd-Pt bimetallic nanodendrites with high activity for oxygen reduction. Science 2009, 324, 1302-1305.

3

Jena, B. K.; Sahu, S. C.; Satpati, S.; Sahu, R. K.; Behera, D.; Mohanty, S. A facile approach for morphosynthesis of Pd nanoelectrocatalysts. Chem. Commun. 2011, 47, 3796-3798.

4
Sahu, S. C.; Samantara, A. K.; Ghosh, A.; Jena, B. K. A bio-inspired approach for shaping Au nanostructures: The role of biomolecule structures in shape evolution. Chem.Eur. J., in press, DOI 10.1002/chem.201300268.
5

Wang, L.; Yamauchi, Y. Block copolymer mediated synthesis of dendritic platinum nanoparticles. J. Am. Chem. Soc. 2009, 131, 9152-9153.

6

Guo, S.; Dong, S.; Wang, E. Pt/Pd bimetallic nanotubes with petal-like surfaces for enhanced catalytic activity and stability towards ethanol electrooxidation. Energy Environ. Sci. 2010, 3, 1307-1310.

7

Mohanty, A.; Garg, N.; Jin, R. A universal approach to the synthesis of noble metal nanodendrites and their catalytic properties. Angew. Chem. Int. Ed. 2010, 49, 4962-4966.

8

Tian, N.; Zhou, Z. -Y.; Yu, N. -F.; Wang, L. -Y.; Sun, S. -G. Direct electrodeposition of tetrahexahedral Pd nanocrystals with high-index facets and high catalytic activity for ethanol electrooxidation. J. Am. Chem. Soc. 2010, 132, 7580-7581.

9

Mazumder, V.; Sun, S. Oleylamine-mediated synthesis of Pd nanoparticles for catalytic formic acid oxidation. J. Am. Chem. Soc. 2009, 131, 4588-4589.

10

Bianchini, C.; Shen, P. K. Palladium-based electrocatalysts for alcohol oxidation in half cells and in direct alcohol fuel cells. Chem. Rev. 2009, 109, 4183-4206.

11

Jin, M.; Zhang, H.; Xie, Z.; Xia, Y. Palladium nanocrystals enclosed by {100} and {111} facets in controlled proportions and their catalytic activities for formic acid oxidation. Energy Environ. Sci. 2012, 5, 6352-6357.

12

Antolini, E. Carbon supports for low-temperature fuel cell catalysts. Appl. Catal. B-Environ. 2009, 88, 1-24.

13

Kauffman, D. R.; Star, A. Graphene versus carbon nanotubes for chemical sensor and fuel cell applications. Analyst 2010, 135, 2790-2797.

14

Geim, A. K.; Novoselov, K. S. The rise of graphene. Nat. Mater. 2007, 6, 183-191.

15

Guo, S.; Dong, S. Graphene nanosheet: Synthesis, molecular engineering, thin film, hybrids, and energy and analytical applications. Chem. Soc. Rev. 2011, 40, 2644-2672.

16

Novoselov, K. S.; Falko, V. I.; Colombo, L.; Gellert, P. R.; Schwab, M. G.; Kim, K. A roadmap for graphene. Nature 2012, 490, 192-200.

17

Allen, M. J.; Tung, V. C.; Kaner, R. B. Honeycomb carbon: A review of graphene. Chem. Rev. 2010, 110, 132-145.

18

Zhu, Y.; Murali, S.; Cai, W.; Li, X.; Suk, J. W.; Potts, J. R.; Ruoff, R. S. Graphene and graphene oxide: Synthesis, properties, and applications. Adv. Mater. 2010, 22, 3906-3924.

19

Lai, L.; Potts, J. R.; Zhan, D.; Wang, L.; Poh, C. K.; Tang, C.; Gong, H.; Shen, Z.; Lin, J.; Ruoff, R. S. Exploration of the active center structure of nitrogen-doped graphene-based catalysts for oxygen reduction reaction. Energy Environ. Sci. 2012, 5, 7936-7942.

20

Liang, Y.; Li, Y.; Wang, H.; Dai, H. Strongly coupled inorganic/nanocarbon hybrid materials for advanced electrocatalysis. J. Am. Chem. Soc. 2013, 135, 2013-2036.

21

Li, Y.; Fan, X.; Qi, J.; Ji, J.; Wang, S.; Zhang, G.; Zhang, F. Palladium nanoparticle-graphene hybrids as active catalysts for the Suzuki reaction. Nano Res. 2010, 3, 429-437.

22

Jin, Z.; Nackashi, D.; Lu, W.; Kittrell, C.; Tour, J. M. Decoration, migration, and aggregation of palladium nanoparticles on graphene sheets. Chem. Mater. 2010, 22, 5695-5699.

23

Lee, J. W.; Hall, A. S.; Kim, J. -D.; Mallouk, T. E. A facile and template-free hydrothermal synthesis of Mn3O4 nanorods on graphene sheets for supercapacitor electrodes with long cycle stability. Chem. Mater. 2012, 24, 1158-1164.

24

Guo, S.; Dong, S.; Wang, E. Three-dimensional Pt-on-Pd bimetallic nanodendrites supported on graphene nanosheet: Facile synthesis and used as an advanced nanoelectrocatalyst for methanol oxidation. ACS Nano 2010, 4, 547-555.

25

Jasuja, K.; Berry, V. Implantation and growth of dendritic gold nanostructures on graphene derivatives: Electrical property tailoring and Raman enhancement. ACS Nano 2009, 3, 2358-2366.

26

Huang, X.; Li, S.; Wu, S.; Huang, Y.; Boey, F.; Gan, C. L.; Zhang, H. Graphene oxide-templated synthesis of ultrathin or tadpole-shaped Au nanowires with alternating hcp and fcc domains. J. Mater. Chem. 2012, 22, 7791-7796.

27

Luo, Z.; Yuwen, L.; Bao, B.; Tian, J.; Zhu, X.; Weng, L.; Wang, L. One-pot, low-temperature synthesis of branched platinum nanowires/reduced graphene oxide (BPtNW/RGO) hybrids for fuel cells. Affiliation Informati1. Laboratory of Advanced Materials, Fudan University, 220 Handan Road, Shanghai 200433, PR China J. Mater. Chem. 2012, 22, 7791-7796.

28

Yao, Z.; Zhu, M.; Jiang, F.; Du, Y.; Wang, C.; Yang P. Highly efficient electrocatalytic performance based on Pt nanoflowers modified reduced graphene oxide/carbon cloth electrode. J. Mater. Chem. 2012, 22, 13707-13713.

29

Goncalves, G.; Marques, P. A. A. P.; Granadeiro, C. M.; Nogueira, H. I. S.; Singh, M. K.; Grcio, J. Surface modification of graphene nanosheets with gold nanoparticles: The role of oxygen moieties at graphene surface on gold nucleation and growth. Chem. Mater. 2009, 21, 4796-4802.

30

Shukla, R.; Nune, S. K.; Chanda, N.; Katti, K.; Mekapothula, S.; Kulkarni, R. R.; Welshons, W. V.; Kannan, R.; Katti, K. V. Soybeans as a phytochemical reservoir for the production and stabilization of biocompatible gold nanoparticles. Small 2008, 4, 1425-1436.

31

Giovannetti, G.; Khomyakov, P. A.; Brocks, G.; Karpan, V. M.; Brink, V. J.; Kelly, P. J. Doping graphene with metal contacts. Phys. Rev. Lett. 2008, 101, 026803.

32

Ramirez, E.; Jansat, S.; Philippot, K.; Lecante, P.; Gomez, M.; Masdeu-Bulto, A. M.; Chaudret, B. Influence of organic ligands on the stabilization of palladium nanoparticles. J. Organomet. Chem. 2004, 689, 4601-4610.

33

Murphy, C. J.; Sau, T. K.; Gole, A. M.; Orendorff, C. J.; Gao, J.; Gou, L.; Hunyadi, S. E.; Li, T. Anisotropic metal nanoparticles: Synthesis, assembly, and optical applications. J. Phys. Chem. B 2005, 109, 13857-13870.

34

Watt, J.; Young, N.; Haigh, S.; Kirkland, A.; Tilley, R. D. Synthesis and structural characterization of branched palladium nanostructures. Adv. Mater. 2009, 21, 2288-2293.

35

Xiong, Y.; Xia, Y. Shape-controlled synthesis of metal nanostructures: The case of palladium. Adv. Mater. 2007, 19, 3385-3391.

36

Koenigsmann, C.; Wong, S. S. One-dimensional noble metal electrocatalysts: A promising structural paradigm for direct methanol fuel cells. Energy Environ. Sci. 2011, 4, 1161-1176.

37

Zhang, S.; Shao, Y.; Yin, G.; Lin, Y. Electrostatic self-assembly of a Pt-around-Au nanocomposite with high activity towards formic acid oxidation. Angew. Chem. Int. Ed. 2010, 49, 2211-2214.

38

Lee, Y. W.; Kim, N. H.; Lee, K. Y.; Kwon, K.; Kim, M.; Han, S. W. Synthesis and characterization of flower-shaped porous Au-Pd alloy nanoparticles. J. Phys. Chem. C 2008, 112, 6717-6722.

39

Lin, Y.; Cui, X.; Yen, C.; Wai, C. M. Platinum/carbon nanotube nanocomposite synthesized in supercritical fluid as electrocatalysts for low-temperature fuel cells. J. Phys. Chem. B 2005, 109, 14410-14415.

40

Wang, L.; Wang, H.; Nemoto, Y.; Yamauchi, Y. Rapid and efficient synthesis of platinum nanodendrites with high surface area by chemical reduction with formic acid. Chem. Mater. 2010, 22, 2835-2841.

41

Zhou, Y. -G.; Chen, J. -J.; Wang, F. -B.; Sheng, Z. -H.; Xia, X. -H. A facile approach to the synthesis of highly electroactive Pt nanoparticles on graphene as an anode catalyst for direct methanol fuel cells. Chem. Commun. 2010, 46, 5951-5953.

42

Qian, W.; Hao, R.; Zhou, J.; Eastman, M.; Manhat, B. A.; Sun, Q.; Goforth, A. M.; Jiao, J. Exfoliated graphene-supported Pt and Pt-based alloys as electrocatalysts for direct methanol fuel cells. Carbon 2013, 52, 595-604.

43

Stankovich, S.; Dikin, D. A.; Piner, R. D.; Kohlhaas, K. A.; Kleinhammes, A.; Jia, Y.; Wu, Y.; Nguyen, S. T.; Ruoff, R. S. Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide. Carbon 2007, 45, 1558-1565.

44

Qiu, J. -D.; Wang, G. -C.; Liang, R. -P.; Xia, X. -H.; Yu, H. -W. Controllable deposition of platinum nanoparticles on graphene as an electrocatalyst for direct methanol fuel cells. J. Phys. Chem. C 2011, 115, 15639-15645.

45

Awasthi, R.; Singh, R. N. Optimization of the Pd-Sn-GNS nanocomposite for enhanced electrooxidation of methanol. Int. J. Hydrogen Energ. 2012, 37, 2103-2110.

Nano Research
Pages 635-643
Cite this article:
Sahu SC, Samantara AK, Dash A, et al. Graphene-induced Pd nanodendrites: A high performance hybrid nanoelectrocatalyst. Nano Research, 2013, 6(9): 635-643. https://doi.org/10.1007/s12274-013-0339-1

681

Views

48

Crossref

N/A

Web of Science

50

Scopus

0

CSCD

Altmetrics

Received: 16 April 2013
Revised: 21 May 2013
Accepted: 26 May 2013
Published: 15 June 2013
© Tsinghua University Press and Springer-Verlag Berlin Heidelberg 2013
Return