AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Cotunneling transport in ultra-narrow gold nanowire bundles

Anaïs Loubat1,2Walter Escoffier1Lise-Marie Lacroix2Guillaume Viau2Reasmey Tan2Julian Carrey2Bénédicte Warot-Fonrose3Bertrand Raquet1( )
Laboratoire National des Champs Magnétiques Intenses CNRS-INSA-UJF-UPS, UPR3228; 143 avenue de Rangueil F-31400 Toulouse France
Université de Toulouse INSA, UPS, LPCNO (Laboratoire de Physique et Chimie des Nano-Objets) F-31077 Toulouse, France; CNRS; UMR5215; LPCNO, F-31077 Toulouse France
Centre d'Elaboration de Matériaux et d'Etudes Structurales CNRS, 29 rue Jeanne Marvig F-31077 Toulouse France
Show Author Information

Graphical Abstract

Abstract

We investigate the charge transport in close-packed ultra-narrow (1.5 nm diameter) gold nanowires stabilized by oleylamine ligands. We give evidence of charging effects in the weakly coupled one-dimensional (1D) nanowires, monitored by the temperature and the bias voltage. At low temperature, in the Coulomb blockade regime, the current flow reveals an original cooperative multi-hopping process between 1D-segments of Au-NWs, minimising the charging energy cost. Above the Coulomb blockade threshold voltage and at high temperature, the charge transport evolves into a sequential tunneling regime between the nearest-nanowires. Our analysis shows that the effective length of the Au-NWs inside the bundle is similar to the 1D localisation length of the electronic wave function (of the order of 120 nm ± 20 nm), but almost two orders of magnitude larger than the diameter of the nanowire. This result confirms the high structural quality of the Au-NW segments.

References

1

Imry, Y. Introduction to Mesoscopic Physics; Oxford University Press: Oxford, 2002.

2

Appell, D. Nanotechnology: Wired for success. Nature 2002, 419, 553-555.

3

Lu, W.; Lieber, C. M. Nanoelectronics from the bottom up. Nat. Mater. 2007, 6, 841-850.

4

Wang, Z. L. Nanowires and Nanobelts: Materials, Properties and Devices; Kluwer Academic Publishers: Boston, 2003.

5

Xia, Y. N.; Yang, P. D.; Sun, Y. G.; Wu, Y. Y.; Mayers, B.; Gates, B.; Yin, Y. D.; Kim, F.; Yan, H. Q. One-dimensional nanostructures: Synthesis, characterization, and applications. Adv. Mater. 2003, 15, 353-389.

6

Wang, C.; Hu, Y. J.; Lieber, C. M.; Sun, S. H. Ultrathin Au nanowires and their transport properties. J. Am. Chem. Soc. 2008, 130, 8902-8903.

7

Patolsky, F.; Lieber, C. M. Nanowire nanosensors. Mater. Today 2005, 8, 20-28.

8

Barrelet, C. J.; Greytak, A. B.; Lieber, C. M. Nanowire photonic circuit elements. Nano Lett. 2004, 4, 1981-1985.

9

Shi, P.; Zhang, J. Y.; Lin, H. Y.; Bohm, P. W. Effect of molecular adsorption on the electrical conductance of single Au nanowires fabricated by electron-beam lithography and focused ion beam etching. Small 2010, 6, 2598-2063.

10

Jacke, S.; Plaza, J. L.; Wilcoxon, J. P.; Palmer, R. E.; Beecher, P.; De Marzi, G.; Redmond, G.; Quinn, A. J.; Chen, Y. Charge transport in nanocrystal wires created by direct electron beam writing. Micro Nano Lett. 2010, 5, 274-277.

11

Song, J. H.; Wu, Y.; Messer, B.; Kind, H.; Yang, P. Metal nanowire formation using Mo3Se3- as reducing and sacrificing templates. J. Am. Chem. Soc. 2001, 123, 10397-10398.

12

Liu, J.; Duan, J. L.; Toimil-Morales, M. E.; Karim, S.; Cornelius, T. W.; Dobrey, D.; Yao, H. J.; Sun, Y. M.; Hou, M. D.; Mo, D.; Wang, Z. G.; Neumann, R. Electrochemical fabrication of single-crystalline and polycrystalline Au nanowires: The influence of deposition parameters. Nanotechnology 2006, 17, 1922.

13

Halder, A.; Ravishankar, R. Ultrafine single-crystalline gold nanowire arrays by oriented attachment. Adv. Mater. 2007, 19, 1854-1858.

14

Pazos-Perez, N.; Baranov, D.; Irsen, S.; Hilgendorff, M.; Liz-Marzan, L. M.; Giersig, M. Synthesis of flexible, ultrathin gold nanowires in organic media. Langmuir 2008, 24, 9855-9860.

15

Lagos, M. J.; Sato, F.; Autreto, P. A. S.; Galvao, D. S.; Rodrigues, V.; Ugarte, D. Temperature effects on the atomic arrangement and conductance of atomic-size gold nanowires generated by mechanical stretching. Nanotechnology 2010, 21, 485702.

16

Chen, J. Y.; Wiley, B. J.; Xia, Y. N. One-dimensional nanostructures of metals: Large-scale synthesis and some potential applications. Langmuir 2007, 23, 4120-4129.

17

Huo, Z. Y.; Tsung, Ch-K.; Huang, W. Y.; Zhang, X. F.; Yang, P. D. Sub-two nanometer single crystal Au nanowires. Nano Lett. 2008, 8, 2041-2044.

18

Mott, N. F.; Davis, E. A. Electronic Processes in Non-Crystalline Materials; Oxford University Press: New York, 1979.

19

Shklovskii, B. I.; Efros, A. L. Electronic Properties of Doped Semiconductors; Springer: London, 1984.

20

Pollak, M.; Shkovskii, B. I. Hopping Transport in Solids; North-Holland: New York, 1991.

21

Aleshin, A. N.; Lee, J. Y.; Chu, S. W.; Lee, S. W.; Kim, B.; Ahn, S. J.; Park, Y. W. Hopping conduction in polydiacetylene single crystals. Phys. Rev. B 2004, 69, 214203.

22

Sheng, P.; Abeles, B.; Arie, Y. Hopping conductivity in granular metals. Phys. Rev. Lett. 1973, 31, 44-47.

23

Mitani, S.; Takahashi, S.; Takanashi, K.; Yakushiji, K.; Maekawa, S.; Fujimori, H. Enhanced magnetoresistance in insulating granular systems: Evidence for higher-order tunneling. Phys. Rev. Lett. 1998, 81, 2799-2802.

24

Yu, D.; Wang, C.; Wehrenberg, B. L.; Guyot-Sionnest, P. Variable range hopping conduction in semiconductor nanocrystal solids. Phys. Rev. Lett. 2004, 92, 216802.

25

Liao, Z. M.; Xun, J.; Yu, D. P. Electron transport in an array of platinum quantum dots. Phys. Lett. A 2005, 345, 386-390.

26

Romero, H. E.; Drndic, M. Coulomb blockade and hopping conduction in PbSe quantum dots. Phys. Rev. Lett. 2005, 95, 156801.

27

Dunford, J. L.; Suganuma, Y.; Dhirani, A. A.; Statt, B. Quasilocalized hopping in molecularly linked Au nanoparticle arrays near the metal-insulator transition. Phys. Rev. B 2005, 72, 075441.

28

Beloborodov, I. S.; Lopatin, A. V.; Vinokur, V. M. Granular electronic systems. Rev. Mod. Phys. 2007, 79, 469-518.

29

Beloborodov, I. S.; Lopatin, A. V.; Vinokur, V. M. Coulomb effects and hopping transport in granular metals. Phys. Rev. B 2005, 72, 125121.

30

Averin, D. V.; Nazarov, Y. V. Virtual electron diffusion during quantum tunneling of the electric charge. Phys. Rev. Lett. 1990, 65, 2446-2449.

31

Tran, T. B.; Beloborodov, I. S.; Lin, X. M.; Bigini, T. P.; Vinokur, V. M.; Jaeger, H. M. Multiple cotunneling in large quantum dot arrays. Phys. Rev. Lett. 2005, 95, 076806.

32

Tran, T. B.; Beloborodov, I. S.; Lin, X. M.; Hu, J.; Lin, X. M.; Rosenbaum, T. F.; Jaeger, H. M. Sequential tunneling and inelastic cotunneling in nanoparticle arrays. Phys. Rev. B 2008, 78, 075437.

33

Parthasarathy, R.; Lin, X. M.; Elteto, K.; Rosenbaum, T. F.; Jaeger, H. M. Percolating through networks of random thresholds: Finite temperature electron tunneling in metal nanocrystal arrays. Phys. Rev. Lett. 2004, 92, 076801.

34

Middleton, A. A.; Wingreen, N. S. Collective transport in arrays of small metallic dots. Phys. Rev. Lett. 1993, 71, 3198-3201.

35

Parthasarathy, R.; Lin, X. M.; Jaeger, H. M. Electronic transport in metal nanocrystal arrays: The effect of structural disorder on scaling behavior. Phys. Rev. Lett. 2001, 87, 186807.

36
The mutual capacitance between parallel NWs is estimated to 0.8 aF, roughly 5 times smaller than the geometrical capacitance defined in Eq. (2).
Nano Research
Pages 644-651
Cite this article:
Loubat A, Escoffier W, Lacroix L-M, et al. Cotunneling transport in ultra-narrow gold nanowire bundles. Nano Research, 2013, 6(9): 644-651. https://doi.org/10.1007/s12274-013-0340-8

677

Views

12

Crossref

N/A

Web of Science

12

Scopus

1

CSCD

Altmetrics

Received: 20 March 2013
Revised: 27 May 2013
Accepted: 27 May 2013
Published: 17 June 2013
© Tsinghua University Press and Springer-Verlag Berlin Heidelberg 2013
Return