AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Highly reactive, flexible yet green Se precursor for metal selenide nanocrystals: Se-octadecene suspension (Se-SUS)

Chaodan PuJianhai ZhouRunchen LaiYuan NiuWennuan NanXiaogang Peng( )
Center for Chemistry of Novel & High-Performance Materials, and Department of ChemistryZhejiang UniversityHangzhou310027China
Show Author Information

Graphical Abstract

Abstract

A suspension of fine selenium (Se) powder (100 or 200 mesh) in octadecene (Se-SUS) has proven to be a high-performance, versatile, convenient, reproducible, yet green Se precursor. The advantages of Se-SUS arise from its highly reactive chemical nature and flexibility. These two features made it possible to carry out the synthesis of high quality metal selenide nanocrystals with diverse compositions and structures, including binary, core/shell, transition metal doped, and complex composition nanocrystals. These successes further demonstrated that Se-SUS is a powerful Se precursor for solving a few long-standing challenges in the synthesis of high quality selenide nanocrystals. For instance, Se-SUS was successfully employed as a Se precursor for shell growth in high quality core/shell nanocrystals to replace expensive and highly toxic precursors, such as Se-phosphine and bis-trimethylsilyl selenide, with greatly lowered epitaxial temperatures (as low as 150 ℃) to avoid alloying. As another example, Se-SUS enabled "co-nucleation doping" as a means of preparing high quality Mn doped ZnSe nanocrystals with pure, stable, and highly efficient dopant fluorescence.

Electronic Supplementary Material

Download File(s)
nr-6-9-652_ESM.pdf (599.6 KB)

References

1

Murray, C. B.; Kagan, C. R.; Bawendi, M. G. Synthesis and characterization of monodisperse nanocrystals and close-packed nanocrystal assemblies. Annu. Rev. Mater. Sci. 2000, 30, 545-610.

2

Peng, X. G. An essay on synthetic chemistry of colloidal nanocrystals. Nano. Res. 2009, 2, 425-447.

3

Murray, C. B.; Norris, D. J.; Bawendi, M. G. Synthesis and characterization of nearly monodisperse CdE (E = S, Se, Te) semiconductor nanocrystallites. J. Am. Chem. Soc. 1993, 115, 8706-8715.

4

Norris, D. J.; Efros, A. L.; Erwin, S. C. Doped nanocrystals. Science 2008, 319, 1776-1779.

5

Pradhan, N.; Goorskey, D.; Thessing, J.; Peng, X. G. An alternative of CdSe nanocrystal emitters: Pure and tunable impurity emissions in ZnSe nanocrystals. J. Am. Chem. Soc. 2005, 127, 17586-17587.

6

Norberg, N. S.; Parks, G. L.; Salley, G. M.; Gamelin, D. R. Giant excitonic Zeeman splittings in colloidal Co2+-doped ZnSe quantum dots. J. Am. Chem. Soc. 2006, 128, 13195-13203.

7

Bussian, D. A.; Crooker, S. A.; Yin, M.; Brynda, M.; Efros, A. L.; Klimov, V. I. Tunable magnetic exchange interactions in manganese-doped inverted core-shell ZnSe-CdSe nanocrystals. Nat. Mater. 2009, 8, 35-40.

8

Ibanez, M.; Zamani, R.; LaLonde, A.; Cadavid, D.; Li, W. H.; Shavel, A.; Arbiol, J.; Morante, J. R.; Gorsse, S.; Snyder, G. J.; Cabot, A. Cu2ZnGeSe4 nanocrystals: Synthesis and thermoelectric properties. J. Am. Chem. Soc. 2012, 134, 4060-4063.

9

Xiao, C.; Xu, J.; Li, K.; Peng, J.; Yang, J. L.; Xie, Y. Superionic phase transition in silver chalcogenide nanocrystals realizing optimized thermoelectric performance. J. Am. Chem. Soc. 2012, 134, 4287-4293.

10

Fan, F. J.; Wang, Y. X.; Liu, X. J.; Wu, L.; Yu, S. H. Large-scale colloidal synthesis of non-stoichiometric Cu2ZnSnSe4 nanocrystals for thermoelectric applications. Adv. Mater. 2012, 24, 6158-6163.

11

Leschkies, K. S.; Beatty, T. J.; Kang, M. S.; Norris, D. J.; Aydil, E. S. Solar cells based on junctions between colloidal PbSe nanocrystals and thin ZnO films. ACS Nano 2009, 3, 3638-3648.

12

Guo, Q.; Kim, S. J.; Kar, M.; Shafarman, W. N.; Birkmire, R. W.; Stach, E. A.; Agrawal, R.; Hillhouse, H. W. Development of CuInSe2 nanocrystal and nanoring inks for low-cost solar cells. Nano Lett. 2008, 8, 2982-2987.

13

Peng, Z. A.; Peng, X. G. Formation of high-quality CdTe, CdSe, and CdS nanocrystals using CdO as precursor. J. Am. Chem. Soc. 2001, 123, 183-184.

14

Qu, L. H.; Peng, Z. A.; Peng, X. G. Alternative routes toward high quality CdSe nanocrystals. Nano Lett. 2001, 1, 333-337.

15

Yu, W. W.; Peng, X. G. Formation of high-quality CdS and other II-VI semiconductor nanocrystals in noncoordinating solvents: Tunable reactivity of monomers. Angew. Chem. Int. Ed. 2002, 41, 2368-2371.

16

Deng, Z. T.; Cao, L.; Tang, F. Q.; Zou, B. S. A new route to zinc-blende CdSe nanocrystals: Mechanism and synthesis. J. Phys. Chem. B 2005, 109, 16671-16675.

17

Yang, Y. A.; Wu, H. M.; Williams, K. R.; Cao, Y. C. Synthesis of CdSe and CdTe nanocrystals without precursor injection. Angew. Chem. Int. Ed. 2005, 44, 6712-6715.

18

Jasieniak, J.; Bullen, C.; van Embden, J.; Mulvaney, P. Phosphine-free synthesis of CdSe nanocrystals. J. Phys. Chem. B 2005, 109, 20665-20668.

19

Chen, O.; Chen, X.; Yang, Y. A.; Lynch, J.; Wu, H. M.; Zhuang, J. Q.; Cao, Y. C. Synthesis of metal-selenide nanocrystals using selenium dioxide as the selenium precursor. Angew. Chem. Int. Ed. 2008, 47, 8638-8641.

20

Shen, H. B.; Niu, J. Z.; Wang, H. Z.; Li, X. M.; Li, L. S.; Chen, X. Size- and shape-controlled synthesis of ZnSe nanocrystals using SeO2 as selenium precursor. Dalton Trans. 2010, 39, 11432-11438.

21

Wei, Y. F.; Yang, J.; Lin, A. W. H.; Ying, J. Y. Highly reactive Se precursor for the phosphine-free synthesis of metal selenide nanocrystals. Chem. Mater. 2010, 22, 5672-5677.

22

Liu, Y.; Yao, D.; Shen, L.; Zhang, H.; Zhang, X. D.; Yang, B. Alkylthiol-enabled Se powder dissolution in oleylamine at room temperature for the phosphine-free synthesis of copper-based quaternary selenide nanocrystals. J. Am. Chem. Soc. 2012, 134, 7207-7210.

23

Nan, W. N.; Niu, Y. A.; Qin, H. Y.; Cui, F.; Yang, Y.; Lai, R. C.; Lin, W. Z.; Peng, X. G. Crystal structure control of zinc-blende CdSe/CdS core/shell nanocrystals: Synthesis and structure-dependent optical properties. J. Am. Chem. Soc. 2012, 134, 19685-19693.

24

Lin, S. L.; Pradhan, N.; Wang, Y. J.; Peng, X. G. High quality ZnSe and ZnS nanocrystals formed by activating zinc carboxylate precursors. Nano Lett. 2004, 4, 2261-2264.

25

Shen, H. B.; Wang, H. Z.; Li, X. M.; Niu, J. Z.; Wang, H.; Chen, X.; Li, L. S. Phosphine-free synthesis of high quality ZnSe, ZnSe/ZnS, and Cu-, Mn-doped ZnSe nanocrystals. Dalton Trans. 2009, 47, 10534-10540.

26

Liu, L. P.; Zhuang, Z. B.; Xie, T.; Wang, Y. G.; Li, J.; Peng, Q.; Li, Y. D. Shape control of CdSe nanocrystals with zinc blende structure. J. Am. Chem. Soc. 2009, 131, 16423-16429.

27

Bullen, C.; van Embden, J.; Jasieniak, J.; Cosgriff, J. E.; Mulder, R. J.; Rizzardo, E.; Gu, M.; Raston, C. L. High activity phosphine-free selenium precursor solution for semiconductor nanocrystal growth. Chem. Mater. 2010, 22, 4135-4143.

28

Zeng, R. S.; Rutherford, M.; Xie, R. G.; Zou, B. S.; Peng, X. G. Synthesis of highly emissive Mn-doped ZnSe nanocrystals without pyrophoric reagents. Chem. Mater. 2010, 22, 2107-2113.

29

Yordanov, G. G.; Yoshimura, H.; Dushkin, C. D. Phosphine-free synthesis of metal chalcogenide quantum dots by means of in situ-generated hydrogen chalcogenides. Colloid Polym. Sci. 2008, 286, 813-817.

30

Li, Z.; Ji, Y. J.; Xie, R. G.; Grisham, S. Y.; Peng, X. G. Correlation of CdS nanocrystal formation with elemental sulfur activation and its implication in synthetic development. J. Am. Chem. Soc. 2011, 133, 17248-17256.

31
Rutherford, M. R. Determination of dopant ion mobility in transition metal doped semiconductor nanocrystals. Ph. D. Dissertation, University of Arkansas, Fayetteville, USA, 2010.
32

Thessing, J.; Qian, J. H.; Chen, H. Y.; Pradhan, N.; Peng, X. G. Interparticle influence on size/size distribution evolution of nanocrystals. J. Am. Chem. Soc. 2007, 129, 2736-2737.

33

Xie, R. G.; Li, Z.; Peng, X. G. Nucleation kinetics vs. chemical kinetics in the initial formation of semiconductor nanocrystals. J. Am. Chem. Soc. 2009, 131, 15457-15466.

34

Capek, R. K.; Moreels, I.; Lambert, K.; De Muynck, D.; Zhao, Q.; Vantomme, A.; Vanhaecke, F.; Hens, Z. Optical properties of zincblende cadmium selenide quantum dots. J. Phys. Chem. C 2010, 114, 6371-6376.

35

Mohamed, M. B.; Tonti, D.; Al-Salman, A.; Chemseddine, A.; Chergui, M. Synthesis of high quality zinc blende CdSe nanocrystals. J. Phys. Chem. B 2005, 109, 10533-10537.

36

Chen, D. A.; Zhao, F.; Qi, H.; Rutherford, M.; Peng, X. G. Bright and stable purple/blue emitting CdS/ZnS core/shell nanocrystals grown by thermal cycling using a single-source precursor. Chem. Mater. 2010, 22, 1437-1444.

37

Reiss, P.; Bleuse, J.; Pron, A. Highly luminescent CdSe/ZnSe core/shell nanocrystals of low size dispersion. Nano Lett. 2002, 2, 781-784.

38

Battaglia, D.; Li, J. J.; Wang, Y. J.; Peng, X. G. Colloidal two-dimensional systems: CdSe quantum shells and wells. Angew. Chem. Int. Ed. 2003, 42, 5035-5039.

39

Kim, S.; Lim, Y. T.; Soltesz, E. G.; De Grand, A. M.; Lee, J.; Nakayama, A.; Parker, J. A.; Mihaljevic, T.; Laurence, R. G.; Dor, D. M.; et al. Near-infrared fluorescent type II quantum dots for sentinel lymph node mapping. Nat. Biotechnol. 2004, 22, 93-97.

40

Blackman, B.; Battaglia, D.; Peng, X. G. Bright and water-soluble near IR-emitting CdSe/CdTe/ZnSe Type-II/Type-I nanocrystals, tuning the efficiency and stability by growth. Chem. Mater. 2008, 20, 4847-4853.

41

Zhong, X. H.; Feng, Y. Y.; Zhang, Y. L.; Gu, Z. Y.; Zou, L. A facile route to violet- to orange-emitting CdxZn1-xSe alloy nanocrystals via cation exchange reaction. Nanotechnology 2007, 18, 385606.

42

Pradhan, N.; Peng, X. G. Efficient and color-tunable Mn-doped ZnSe nanocrystal emitters: Control of optical performance via greener synthetic chemistry. J. Am. Chem. Soc. 2007, 129, 3339-3347.

43

Pradhan, N.; Battaglia, D. M.; Liu, Y. C.; Peng, X. G. Efficient, stable, small, and water-soluble doped ZnSe nanocrystal emitters as non-cadmium biomedical labels. Nano Lett. 2007, 7, 312-317.

44

Chen, D. A.; Viswanatha, R.; Ong, G. L.; Xie, R. G.; Balasubramaninan, M.; Peng, X. G. Temperature dependence of "elementary processes" in doping semiconductor nanocrystals. J. Am. Chem. Soc. 2009, 131, 9333-9339.

45

Pan, D. C.; An, L. J.; Sun, Z. M.; Hou, W.; Yang, Y.; Yang, Z. Z.; Lu, Y. F. Synthesis of Cu-In-S ternary nanocrystals with tunable structure and composition. J. Am. Chem. Soc. 2008, 130, 5620-5621.

46

Connor, S. T.; Hsu, C. M.; Weil, B. D.; Aloni, S.; Cui, Y. Phase transformation of biphasic Cu2S-CuInS2 to monophasic CuInS2 nanorods. J. Am. Chem. Soc. 2009, 131, 4962-4966.

47

Xie, R. G.; Rutherford, M.; Peng, X. G. Formation of high-quality I-III-VI semiconductor nanocrystals by tuning relative reactivity of cationic precursors. J. Am. Chem. Soc. 2009, 131, 5691-5697.

48

Li, L. A.; Pandey, A.; Werder, D. J.; Khanal, B. P.; Pietryga, J. M.; Klimov, V. I. Efficient synthesis of highly luminescent copper indium sulfide-based core/shell nanocrystals with surprisingly long-lived emission. J. Am. Chem. Soc. 2011, 133, 1176-1179.

49

Kar, M.; Agrawal, R.; Hillhouse, H. W. Formation pathway of CuInSe2 nanocrystals for solar cells. J. Am. Chem. Soc. 2011, 133, 17239-17247.

50

Yu, W. W.; Qu, L. H.; Guo, W. Z.; Peng, X. G. Experimental determination of the extinction coefficient of CdTe, CdSe, and CdS nanocrystals. Chem. Mater. 2003, 15, 2854-2860.

Nano Research
Pages 652-670
Cite this article:
Pu C, Zhou J, Lai R, et al. Highly reactive, flexible yet green Se precursor for metal selenide nanocrystals: Se-octadecene suspension (Se-SUS). Nano Research, 2013, 6(9): 652-670. https://doi.org/10.1007/s12274-013-0341-7

807

Views

119

Crossref

N/A

Web of Science

121

Scopus

0

CSCD

Altmetrics

Received: 31 May 2013
Accepted: 02 June 2013
Published: 18 June 2013
© Tsinghua University Press and Springer-Verlag Berlin Heidelberg 2013
Return