AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Clean transfer of graphene on Pt foils mediated by a carbon monoxide intercalation process

Donglin Ma1Yanfeng Zhang1,2( )Mengxi Liu1Qingqing Ji1Teng Gao1Yu Zhang1,2Zhongfan Liu1( )
Center for Nanochemistry (CNC)Beijing National Laboratory for Molecular SciencesCollege of Chemistry and Molecular EngineeringAcademy for Advanced Interdisciplinary StudiesPeking UniversityBeijing100871China
Department of Materials Science and EngineeringCollege of EngineeringPeking UniversityBeijing100871China
Show Author Information

Graphical Abstract

Abstract

Noble metals such as Pt are a perfect substrate for the catalytic growth of monolayer graphene. However, the requirements of the subsequent transfer process are not compatible with the traditional etching method. In this work, we find that the interaction of graphene with Pt foil can be weakened through the intercalation of carbon monoxide (CO) under ambient pressure. This intercalation process occurs on both hexagonal-shape graphene islands and irregular graphene patches on changing the CO partial pressure from 0 to 0.6 MPa, as observed by scanning electron microscopy (SEM), Raman spectroscopy and X-ray photoemission spectroscopy. We demonstrate that, on a practical timescale, the intercalation ratio is proportional to the partial pressure of CO. Furthermore, we develop a clean transfer method of CO-intercalated graphene with water as a peeling agent. We show that this method enables the transfer of tens of micrometer-scale graphene patches onto SiO2/Si, which are free from metal or oxide particle contamination. This transfer method should be a significant step towards the clean transfer of graphene, as well as the recyclable use of noble metal substrates.

Electronic Supplementary Material

Download File(s)
nr-6-9-671_ESM.pdf (399.1 KB)

References

1

Geim, A. K.; Novoselov, K. S. The rise of graphene. Nat. Mater. 2007, 6, 183-191.

2

Novoselov, K. S.; Geim, A. K.; Morozov, S. V.; Jiang, D.; Zhang, Y.; Dubonos, S. V.; Grigorieva, I. V.; Firsov, A. A. Electric field effect in atomically thin carbon films. Science 2004, 306, 666-669.

3

Novoselov, K. S.; Geim, A. K.; Morozov, S. V.; Jiang, D.; Katsnelson, M. I.; Grigorieva, I. V.; Dubonos, S. V.; Firsov, A. A. Two-dimensional gas of massless Dirac fermions in graphene. Nature 2005, 438, 197-200.

4

Nair, R. R.; Blake, P.; Grigorenko, A. N.; Novoselov, K. S.; Booth, T. J.; Stauber, T.; Peres, N. M. R.; Geim, A. K. Fine structure constant defines visual transparency of graphene. Science 2008, 320, 1308.

5

Schwierz, F. Graphene transistors. Nat. Nanotechnol. 2010, 5, 487-496.

6

Bonaccorso, F.; Sun, Z.; Hasan, T.; Ferrari, A. C. Graphene photonics and optoelectronics. Nat. Photons 2010, 4, 611-622.

7

Li, X.; Cai, W.; An, J.; Kim, S.; Nah, J.; Yang, D.; Piner, R.; Velamakanni, A.; Jung, I.; Tutuc, E. et al. Large-area synthesis of high-quality and uniform graphene films on copper foils. Science 2009, 324, 1312-1314.

8

Bae, S.; Kim, H.; Lee, Y.; Xu, X.; Park, J. S.; Zheng, Y.; Balakrishnan, J.; Lei, T.; Ri Kim, H.; Song, Y. I. et al. Roll-to-roll production of 30-inch graphene films for transparent electrodes. Nat. Nanotechnol. 2010, 5, 574-578.

9

Kim, K. S.; Zhao, Y.; Jang, H.; Lee, S. Y.; Kim, J. M.; Kim, K. S.; Ahn, J. H.; Kim, P.; Choi, J. Y.; Hong, B. H. Large-scale pattern growth of graphene films for stretchable transparent electrodes. Nature 2009, 457, 706-710.

10

Reina, A.; Jia, X.; Ho, J.; Nezich, D.; Son, H.; Bulovic, V.; Dresselhaus, M. S.; Kong, J. Large area, few-layer graphene films on arbitrary substrates by chemical vapor deposition. Nano Lett. 2009, 9, 30-35.

11

Li, X.; Zhu, Y.; Cai, W.; Borysiak, M.; Han, B.; Chen, D.; Piner, R. D.; Colombo, L.; Ruoff, R. S. Transfer of large-area graphene films for high-performance transparent conductive electrodes. Nano Lett. 2009, 9, 4359-4363.

12

Yan, Z.; Lin, J.; Peng, Z.; Sun, Z.; Zhu, Y.; Li, L.; Xiang, C.; Samuel, E. L.; Kittrell, C.; Tour, J. M. Toward the synthesis of wafer-scale single-crystal graphene on copper foils. ACS Nano 2012, 6, 9110-9117.

13

Liu, N.; Fu, L.; Dai, B.; Yan, K.; Liu, X.; Zhao, R.; Zhang, Y.; Liu, Z. Universal segregation growth approach to wafer-size graphene from non-noble metals. Nano Lett. 2011, 11, 297-303.

14

Chen, J. H.; Jang, C.; Adam, S.; Fuhrer, M. S.; Williams, E. D.; Ishigami, M. Charged-impurity scattering in graphene. Nat. Phys. 2008, 4, 377-381.

15

Chen, J. H.; Jang, C.; Xiao, S.; Ishigami, M.; Fuhrer, M. S. Intrinsic and extrinsic performance limits of graphene devices on SiO2. Nat. Nanotechnol. 2008, 3, 206-209.

16

Suk, J. W.; Kitt, A.; Magnuson, C. W.; Hao, Y.; Ahmed, S.; An, J.; Swan, A. K.; Goldberg, B. B.; Ruoff, R. S. Transfer of CVD-grown monolayer graphene onto arbitrary substrates. ACS Nano 2011, 5, 6916-6924.

17

Liang, X.; Sperling, B. A.; Calizo, I.; Cheng, G.; Hacker, C. A.; Zhang, Q.; Obeng, Y.; Yan, K.; Peng, H.; Li, Q. et al. Toward clean and crackless transfer of graphene. ACS Nano 2011, 5, 9144-9153.

18

Shin, D. W.; Lee, H. M.; Yu, S. M.; Lim, K. S.; Jung, J. H.; Kim, M. K.; Kim, S. W.; Han, J. H.; Ruoff, R. S.; Yoo, J. B. A facile route to recover intrinsic graphene over large scale. ACS Nano 2012, 6, 7781-7788.

19

Caldwell, J. D.; Anderson, T. J.; Culbertson, J. C.; Jernigan, G. G.; Hobart, K. D.; Kub, F. J.; Tadjer, M. J.; Tedesco, J. L.; Hite, J. K.; Mastro, M. A. et al. Technique for the dry transfer of epitaxial graphene onto arbitrary substrates. ACS Nano 2010, 4, 1108-1114.

20

Charlotte, H.; Markus, K.; Nedjma, B.; Stefan, S.; Daniel, F. F.; Johann, C.; Klaus, M.; Thomas, M.; Carsten, B. Mechanical exfoliation of epitaxial graphene on Ir(111) enabled by Br2 intercalation. J. Phys: Condens. Matter 2012, 24, 314208.

21

Sicot, M.; Leicht, P.; Zusan, A.; Bouvron, S.; Zander, O.; Weser, M.; Dedkov, Y. S.; Horn, K.; Fonin, M. Size-selected epitaxial nanoislands underneath graphene moiré on Rh(111). ACS Nano 2012, 6, 151-158.

22

Decker, R.; Brede, J.; Atodiresei, N.; Caciuc, V.; Blügel, S.; Wiesendanger, R. Atomic-scale magnetism of cobalt-intercalated graphene. Phys. Rev. B 2013, 87, 041403.

23

Gierz, I.; Suzuki, T.; Weitz, R. T.; Lee, D. S.; Krauss, B.; Riedl, C.; Starke, U.; Höchst, H.; Smet, J. H.; Ast, C. R. et al. Electronic decoupling of an epitaxial graphene monolayer by gold intercalation. Phys. Rev. B 2010, 81, 235408.

24

Varykhalov, A.; Sánchez-Barriga, J.; Shikin, A. M.; Biswas, C.; Vescovo, E.; Rybkin, A.; Marchenko, D.; Rader, O. Electronic and magnetic properties of quasifreestanding graphene on Ni. Phys. Rev. Lett. 2008, 101, 157601.

25

Gao, T.; Gao, Y.; Chang, C.; Chen, Y.; Liu, M.; Xie, S.; He, K.; Ma, X.; Zhang, Y.; Liu, Z. Atomic-scale morphology and electronic structure of manganese atomic layers underneath epitaxial graphene on SiC(0001). ACS Nano 2012, 6, 6562-6568.

26

Lizzit, S.; Larciprete, R.; Lacovig, P.; Dalmiglio, M.; Orlando, F.; Baraldi, A.; Gammelgaard, L.; Barreto, L.; Bianchi, M.; Perkins, E. et al. Transfer-free electrical insulation of epitaxial graphene from its metal substrate. Nano Lett. 2012, 12, 4503-4507.

27

Mao, J.; Huang, L.; Pan, Y.; Gao, M.; He, J.; Zhou, H.; Guo, H.; Tian, Y.; Zou, Q.; Zhang, L. et al. Silicon layer intercalation of centimeter-scale, epitaxially grown monolayer graphene on Ru(0001). Appl. Phys. Lett. 2012, 100, 093101.

28

Cui, Y.; Gao, J.; Jin, L.; Zhao, J.; Tan, D.; Fu, Q.; Bao, X. An exchange intercalation mechanism for the formation of a two-dimensional Si structure underneath graphene. Nano Res. 2012, 5, 352-360.

29

Zhang, H.; Fu, Q.; Cui, Y.; Tan, D.; Bao, X. Growth mechanism of graphene on Ru(0001) and O2 adsorption on the graphene/Ru(0001) surface. J. Phys. Chem. C 2009, 113, 8296-8301.

30

Sutter, P.; Sadowski, J. T.; Sutter, E. A. Chemistry under cover: Tuning metal−graphene interaction by reactive intercalation. J. Am. Chem. Soc. 2010, 132, 8175-8179.

31

Riedl, C.; Coletti, C.; Iwasaki, T.; Zakharov, A. A.; Starke, U. Quasi-free-standing epitaxial graphene on SiC obtained by hydrogen intercalation. Phys. Rev. Lett. 2009, 103, 246804.

32

Mu, R.; Fu, Q.; Jin, L.; Yu, L.; Fang, G.; Tan, D.; Bao, X. Visualizing chemical reactions confined under graphene. Angew. Chem. Int. Ed. 2012, 51, 4856-4859.

33

Gland, J. L.; Kollin, E. B. Carbon monoxide oxidation on the Pt(111) surface: Temperature programmed reaction of coadsorbed atomic oxygen and carbon monoxide. J. Chem. Phys. 1983, 78, 963-974.

34

Gao, T.; Xie, S.; Gao, Y.; Liu, M.; Chen, Y.; Zhang, Y.; Liu, Z. Growth and atomic-scale characterizations of graphene on multifaceted textured Pt foils prepared by chemical vapor deposition. ACS Nano 2011, 5, 9194-9201.

35

Gao, L.; Ren, W.; Xu, H.; Jin, L.; Wang, Z.; Ma, T.; Ma, L. P.; Zhang, Z.; Fu, Q.; Peng, L. M.; et al. Repeated growth and bubbling transfer of graphene with millimetre-size single-crystal grains using platinum. Nat. Commun. 2012, 3, 699.

36

Zheng, J.; Liu, H. T.; Wu, B.; Di, C. A.; Guo, Y. L.; Wu, T.; Yu, G.; Liu, Y. Q.; Zhu, D. B. Production of graphite chloride and bromide using microwave sparks. Sci. Rep. 2012, 2, 662.

37

Kinne, M.; Fuhrmann, T.; Zhu, J. F.; Tränkenschuh, B.; Denecke, R.; Steinrück, H. P. Coadsorption of D2O and CO on Pt(111) studied by in situ high-resolution X-ray photoelectron spectroscopy. Langmuir 2004, 20, 1819-1826.

Nano Research
Pages 671-678
Cite this article:
Ma D, Zhang Y, Liu M, et al. Clean transfer of graphene on Pt foils mediated by a carbon monoxide intercalation process. Nano Research, 2013, 6(9): 671-678. https://doi.org/10.1007/s12274-013-0342-6

483

Views

35

Crossref

N/A

Web of Science

34

Scopus

2

CSCD

Altmetrics

Received: 19 March 2013
Revised: 10 June 2013
Accepted: 12 June 2013
Published: 11 July 2013
© Tsinghua University Press and Springer-Verlag Berlin Heidelberg 2013
Return