AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Enhanced and tunable fluorescent quantum dots within a single crystal of protein

Hui Wei1Stephen House2Jiangjiexing Wu1,3Jiong Zhang2Zidong Wang2Ying He2Elizabeth J. Gao1Yigui Gao4Howard Robinson5Wei Li3Jianmin Zuo2( )Ian M. Robertson2( )Yi Lu1,2( )
Department of ChemistryUniversity of Illinois at Urbana-ChampaignUrbanaIllinois61801USA
Department of Materials Science and EngineeringUniversity of Illinois at Urbana-ChampaignUrbanaIllinois61801USA
Key Laboratory for Green Chemical Technology MOETianjin UniversityTianjin300072China
George L. Clark X-Ray Facility and 3M Materials LaboratoryUniversity of Illinois at Urbana-ChampaignUrbanaIllinois61801USA
Department of BiologyBrookhaven National LaboratoryUptonNew York11973USA
Show Author Information

Graphical Abstract

Abstract

The design and synthesis of bio-nano hybrid materials can not only provide new materials with novel properties, but also advance our fundamental understanding of interactions between biomolecules and their abiotic counterparts. Here, we report a new approach to achieving such a goal by growing CdS quantum dots (QDs) within single crystals of lysozyme protein. This bio-nano hybrid emitted much stronger red fluorescence than its counterpart without the crystal, and such fluorescence properties could be either enhanced or suppressed by the addition of Ag(Ⅰ) or Hg(Ⅱ), respectively. The three-dimensional incorporation of CdS QDs within the lysozyme crystals was revealed by scanning transmission electron microscopy with electron tomography. More importantly, since our approach did not disrupt the crystalline nature of the lysozyme crystals, the metal and protein interactions were able to be studied by X-ray crystallography, thus providing insight into the role of Cd(Ⅱ) in the CdS QDs formation.

Electronic Supplementary Material

Download File(s)
nr-6-9-627_ESM.pdf (773.8 KB)

References

1

Niemeyer, C. M.; Mirkin, C. A. Nanobiotechnology Ⅱ: More concepts and applications; WILEY-VCH: Weinheim, 2004.

2

Xue, X. J.; Wang, F.; Liu, X. G. One-step, room temperature, colorimetric detection of mercury (Hg2+) using DNA/nanoparticle conjugates. J. Am. Chem. Soc. 2008, 130, 3244–3245.

3

Suzuki, M.; Abe, M.; Ueno, T.; Abe, S.; Goto, T.; Toda, Y.; Akita, T.; Yamadae, Y.; Watanabe, Y. Preparation and catalytic reaction of Au/Pd bimetallic nanoparticles in Apo-ferritin. Chem. Commun. 2009, 4871–4873.

4

Ruiz-Hitzky, E.; Darder, M.; Aranda, P.; Ariga, K. Advances in biomimetic and nanostructured biohybrid materials. Adv. Mater. 2010, 22, 323–336.

5

Wang, F.; Tan, W. B.; Zhang, Y.; Fan, X. P.; Wang, M. Q. Luminescent nanomaterials for biological labelling. Nanotechnology 2006, 17, R1–R13.

6

Yan, J. L.; Estevez, M. C.; Smith, J. E.; Wang, K. M.; He, X. X.; Wang, L.; Tan, W. H. Dye-doped nanoparticles for bioanalysis. Nano Today 2007, 2, 44–50.

7

Lu, Y.; Liu, J. W. Smart nanomaterials inspired by biology: Dynamic assembly of error-free nanomaterials in response to multiple chemical and biological stimuli. Acc. Chem. Res. 2007, 40, 315–323.

8

Wang, Z. D.; Lu, Y. Functional DNA directed assembly of nanomaterials for biosensing. J. Mater. Chem. 2009, 19, 1788–1798.

9

Lee, J. H.; Yigit, M. V.; Mazumdar, D.; Lu, Y. Molecular diagnostic and drug delivery agents based on aptamer-nanomaterial conjugates. Adv. Drug Deliv. Rev. 2010, 62, 592–605.

10

Xing, H.; Wong, N. Y.; Xiang, Y.; Lu, Y. DNA aptamer functionalized nanomaterials for intracellular analysis, cancer cell imaging and drug delivery. Curr. Opin. Chem. Biol. 2012, 16, 429–435.

11

Pal, S.; Sharma, J.; Yan, H.; Liu, Y. Stable silver nanoparticle-DNA conjugates for directed self-assembly of core–satellite silver–gold nanoclusters. Chem. Commun. 2009, 6059–6061.

12

Choi, S.; Dickson, R. M.; Yu, J. Developing luminescent silver nanodots for biological applications. Chem. Soc. Rev. 2012, 41, 1867–1891.

13

Dickerson, M. B.; Sandhage, K. H.; Naik, R. R. Protein- and peptide-directed syntheses of inorganic materials. Chem. Rev. 2008, 108, 4935–4978.

14

Sanders, L. K.; Xian, W. J.; Guaqueta, C.; Strohman, M. J.; Vrasich, C. R.; Luijten, E.; Wong, G. C. L. Control of electrostatic interactions between F-actin and genetically modified lysozyme in aqueous media. Proc. Natl. Acad. Sci. U. S. A. 2007, 104, 15994–15999.

15

Zhang, M. G.; Smith, A.; Gorski, W. Carbon nanotube-chitosan system for electrochemical sensing based on dehydrogenase enzymes. Anal. Chem. 2004, 76, 5045–5050.

16

Lee, Y. J.; Yi, H.; Kim, W. J.; Kang, K.; Yun, D. S.; Strano, M. S.; Ceder, G.; Belcher, A. M. Fabricating genetically engineered high-power lithium-ion batteries using multiple virus genes. Science 2009, 324, 1051–1055.

17

Park, T. J.; Lee, S. Y.; Heo, N. S.; Seo, T. S. In vivo synthesis of diverse metal nanoparticles by recombinant Escherichia coli. Angew. Chem. Int. Ed. 2010, 49, 7019–7024.

18

Sturzenbaum, S. R.; Hockner, M.; Panneerselvam, A.; Levitt, J.; Bouillard, J. S.; Taniguchi, S.; Dailey, L. A.; Khanbeigi, R. A.; Rosca, E. V.; Thanou, M. et al. Biosynthesis of luminescent quantum dots in an earthworm. Nat. Nanotechnol. 2013, 8, 57–60.

19

Bao, H. F.; Lu, Z. S.; Cui, X. Q.; Qiao, Y.; Guo, J.; Anderson, J. M.; Li, C. M. Extracellular microbial synthesis of biocompatible CdTe quantum dots. Acta Biomater. 2010, 6, 3534–3541.

20

Liu, J. W.; Lu, Y. A colorimetric lead biosensor using DNAzyme-directed assembly of gold nanoparticles. J. Am. Chem. Soc. 2003, 125, 6642–6643.

21

Wei, H.; Wang, Z. D.; Yang, L. M.; Tian, S. L.; Hou, C. J.; Lu, Y. Lysozyme-stabilized gold fluorescent cluster: Synthesis and application as Hg2+ sensor. Analyst 2010, 135, 1406–1410.

22

Xing, H.; Wang, Z. D.; Xu, Z. D.; Wong, N. Y.; Xiang, Y.; Liu, G. L. G.; Lu, Y. DNA-directed assembly of asymmetric nanoclusters using Janus nanoparticles. ACS Nano 2012, 6, 802–809.

23

Li, L. L.; Zhang, R. B.; Yin, L. L.; Zheng, K. Z.; Qin, W. P.; Selvin, P. R.; Lu, Y. Biomimetic surface engineering of lanthanide-doped upconversion nanoparticles as versatile bioprobes. Angew. Chem. Int. Ed. 2012, 51, 6121–6125.

24

Li, L. L.; Yin, Q.; Cheng, J. J.; Lu, Y. Polyvalent mesoporous silica nanoparticle-aptamer bioconjugates target breast cancer cells. Adv. Healthcare Mater. 2012, 1, 567–572.

25

Wang, Z. D.; Tang, L. H.; Tan, L. H.; Li, J. H.; Lu, Y. Discovery of the DNA "genetic code" for abiological gold nanoparticle morphologies. Angew. Chem. Int. Ed. 2012, 51, 9078–9082.

26

Wu, P. W.; Hwang, K.; Lan, T.; Lu, Y. A DNAzyme-gold nanoparticle probe for uranyl ion in living cells. J. Am. Chem. Soc. 2013, 135, 5254–5257.

27

Li, L. L.; Wu, P. W.; Hwang, K.; Lu, Y. An exceptionally simple strategy for DNA-functionalized up-conversion nanoparticles as biocompatible agents for nanoassembly, DNA delivery, and imaging. J. Am. Chem. Soc. 2013, 135, 2411–2414.

28

Ueno, T.; Abe, S.; Yokoi, N.; Watanabe, Y. Coordination design of artificial metalloproteins utilizing protein vacant space. Coord. Chem. Rev. 2007, 251, 2717–2731.

29

Xie, J. P.; Zheng, Y. G.; Ying, J. Y. Protein-directed synthesis of highly fluorescent gold nanoclusters. J. Am. Chem. Soc. 2009, 131, 888–889.

30

Medalsy, I.; Dgany, O.; Sowwan, M.; Cohen, H.; Yukashevska, A.; Wolf, S. G.; Wolf, A.; Koster, A.; Almog, O.; Marton, I. et al. SP1 protein-based nanostructures and arrays. Nano Lett. 2008, 8, 473–477.

31

Dani, R. K.; Kang, M.; Kalita, M.; Smith, P. E.; Bossmann, S. H.; Chikan, V. MspA porin–gold nanoparticle assemblies: Enhanced binding through a controlled cysteine mutation. Nano Lett. 2008, 8, 1229–1236.

32

Guo, C. L.; Irudayaraj, J. Fluorescent Ag clusters via a protein-directed approach as a Hg(Ⅱ) ion sensor. Anal. Chem. 2011, 83, 2883–2889.

33

Chaudhari, K.; Xavier, P. L.; Pradeep, T. Understanding the evolution of luminescent gold quantum clusters in protein templates. ACS Nano 2011, 5, 8816–8827.

34

Ge, J.; Lei, J. D.; Zare, R. N. Protein–inorganic hybrid nanoflowers. Nat. Nanotechnol. 2012, 7, 428–432.

35

Wang, Y. C.; Wang, Y.; Zhou, F. B.; Kim, P.; Xia, Y. N. Protein-protected Au clusters as a new class of nanoscale biosensor for label-free fluorescence detection of proteases. Small 2012, 8, 3769–3773.

36

Colombo, M.; Mazzucchelli, S.; Collico, V.; Avvakumova, S.; Pandolfi, L.; Corsi, F.; Porta, F.; Prosperi, D. Protein-assisted one-pot synthesis and biofunctionalization of spherical gold nanoparticles for selective targeting of cancer cells. Angew. Chem. Int. Ed. 2012, 51, 9272–9275.

37

Chen, T. H.; Tseng, W. L. (Lysozyme type Ⅵ)-stabilized Au8 clusters: Synthesis mechanism and application for sensing of glutathione in a single drop of blood. Small 2012, 8, 1912–1919.

38

Meldrum, F. C.; Wade, V. J.; Nimmo, D. L.; Heywood, B. R.; Mann, S. Synthesis of inorganic nanophase materials in supramolecular protein cages. Nature 1991, 349, 684–687.

39

Uchida, M.; Klem, M. T.; Allen, M.; Suci, P.; Flenniken, M.; Gillitzer, E.; Varpness, Z.; Liepold, L. O.; Young, M.; Douglas, T. Biological containers: Protein cages as multifunctional nanoplatforms. Adv. Mater. 2007, 19, 1025–1042.

40

Butts, C. A.; Swift, J.; Kang, S. G.; Di Costanzo, L.; Christianson, D. W.; Saven, J. G.; Dmochowski, I. J. Directing noble metal ion chemistry within a designed ferritin protein. Biochemistry 2008, 47, 12729–12739.

41

Margolin, A. L.; Navia, M. A. Protein crystals as novel catalytic materials. Angew. Chem. Int. Ed. 2001, 40, 2204–2222.

42

Sanghamitraa, N. J. M.; Ueno, T. Expanding coordination chemistry from protein to protein assembly. Chem. Commun. 2013, 49, 4114–4126.

43

Falkner, J. C.; Turner, M. E.; Bosworth, J. K.; Trentler, T. J.; Johnson, J. E.; Lin, T. W.; Colvin, V. L. Virus crystals as nanocomposite scaffolds. J. Am. Chem. Soc. 2005, 127, 5274–5275.

44

Guli, M.; Lambert, E. M.; Li, M.; Mann, S. Template-directed synthesis of nanoplasmonic arrays by intracrystalline metalization of cross-linked lysozyme crystals. Angew. Chem. Int. Ed. 2010, 49, 520–523.

45

Ueno, T.; Abe, S.; Koshiyama, T.; Ohki, T.; Hikage, T.; Watanabe, Y. Elucidation of metal-ion accumulation induced by hydrogen bonds on protein surfaces by using porous lysozyme crystals containing Rh-III ions as the model surfaces. Chem. Eur. J. 2010, 16, 2730–2740.

46

Wei, H.; Wang, Z. D.; Zhang, J.; House, S.; Gao, Y. G.; Yang, L. M.; Robinson, H.; Tan, L. H.; Xing, H.; Hou, C. J. et al. Time-dependent, protein-directed growth of gold nanoparticles within a single crystal of lysozyme. Nat. Nanotechnol. 2011, 6, 93–97.

47

Vekilov, P. G. Gold nanoparticles grown in a crystal. Nat. Nanotechnol. 2011, 6, 82–83.

48

Liu, C. L.; Wu, H. T.; Hsiao, Y. H.; Lai, C. W.; Shih, C. W.; Peng, Y. K.; Tang, K. C.; Chang, H. W.; Chien, Y. C.; Hsiao, J. K. et al. Insulin-directed synthesis of fluorescent gold nanoclusters: Preservation of insulin bioactivity and versatility in cell imaging. Angew. Chem. Int. Ed. 2011, 50, 7056–7060.

49

Wei, H.; Lu, Y. Catalysis of gold nanoparticles within lysozyme single crystals. Chem. Asian J. 2012, 7, 680–683.

50

Abe, S.; Tsujimoto, M.; Yoneda, K.; Ohba, M.; Hikage, T.; Takano, M.; Kitagawa, S.; Ueno, T. Porous protein crystals as reaction vessels for controlling magnetic properties of nanoparticles. Small 2012, 8, 1314–1319.

51

Steigerwald, M. L.; Brus, L. E. Semiconductor crystallites: A class of large molecules. Acc. Chem. Res. 1990, 23, 183–188.

52

Chan, W. C. W.; Nie, S. M. Quantum dot bioconjugates for ultrasensitive nonisotopic detection. Science 1998, 281, 2016–2018.

53

Bruchez, M.; Moronne, M.; Gin, P.; Weiss, S.; Alivisatos, A. P. Semiconductor nanocrystals as fluorescent biological labels. Science 1998, 281, 2013–2016.

54

Bhattacharya, P.; Ghosh, S.; Stiff-Roberts, A. D. Quantum dot opto-electronic devices. Ann. Rev. Mater. Res. 2004, 34, 1–40.

55

Gao, X. H.; Cui, Y. Y.; Levenson, R. M.; Chung, L. W. K.; Nie, S. M. In vivo cancer targeting and imaging with semiconductor quantum dots. Nat. Biotechnol. 2004, 22, 969–976.

56

Sargent, E. H. Colloidal quantum dot solar cells. Nat. Photonics 2012, 6, 133–135.

57

Regulacio, M. D.; Han, M. Y. Composition-tunable alloyed semiconductor nanocrystals. Acc. Chem. Res. 2010, 43, 621–630.

58

Peng, X. G.; Manna, L.; Yang, W. D.; Wickham, J.; Scher, E.; Kadavanich, A.; Alivisatos, A. P. Shape control of CdSe nanocrystals. Nature 2000, 404, 59–61.

59

Li, Z.; Qin, H. Y.; Guzun, D.; Benamara, M.; Salamo, G.; Peng, X. G. Uniform thickness and colloidal-stable CdS quantum disks with tunable thickness: Synthesis and properties. Nano Res. 2012, 5, 337–351.

60

Li, F.; Zhang, Z. P.; Peng, J.; Cui, Z. Q.; Pang, D. W.; Li, K.; Wei, H. P.; Zhou, Y. F.; Wen, J. K.; Zhang, X. E. Imaging viral behavior in mammalian cells with self-assembled capsid-quantum-dot hybrid particles. Small 2009, 5, 718–726.

61

Hu, M.; Yan, J.; He, Y.; Lu, H. T.; Weng, L. X.; Song, S. P.; Fan, C. H.; Wang, L. H. Ultrasensitive, multiplexed detection of cancer biomarkers directly in serum by using a quantum dot-based microfluidic protein chip. ACS Nano 2010, 4, 488–494.

62

Xiao, Q.; Huang, S.; Qi, Z. D.; Zhou, B.; He, Z. K.; Liu, Y. Conformation, thermodynamics and stoichiometry of HSA adsorbed to colloidal CdSe/ZnS quantum dots. BBA-Proteins Proteomics 2008, 1784, 1020–1027.

63

Chen, L. D.; Liu, J.; Yu, X. F.; He, M.; Pei, X. F.; Tang, Z. Y.; Wang, Q. Q.; Pang, D. W.; Li, Y. The biocompatibility of quantum dot probes used for the targeted imaging of hepatocellular carcinoma metastasis. Biomaterials 2008, 29, 4170–4176.

64

Qu, Y.; Li, W.; Zhou, Y. L.; Liu, X. F.; Zhang, L. L.; Wang, L. M.; Li, Y. F.; Iida, A.; Tang, Z. Y.; Zhao, Y. L. et al. Full assessment of fate and physiological behavior of quantum dots utilizing caenorhabditis elegans as a model organism. Nano Lett. 2011, 11, 3174–3183.

65

Kang, Z. H.; Liu, Y.; Tsang, C. H. A.; Ma, D. D. D.; Fan, X.; Wong, N. B.; Lee, S. T. Water-soluble silicon quantum dots with wavelength-tunable photoluminescence. Adv. Mater. 2009, 21, 661–664.

66

Liu, J. W.; Lee, J. H.; Lu, Y. Quantum dot encoding of aptamer-linked nanostructures for one-pot simultaneous detection of multiple analytes. Anal. Chem. 2007, 79, 4120–4125.

67

Resch, U.; Eychmuller, A.; Haase, M.; Weller, H. Absorption and fluorescence behavior of redispersible Cds colloids in various organic-solvents. Langmuir 1992, 8, 2215–2218.

68

Dameron, C. T.; Reese, R. N.; Mehra, R. K.; Kortan, A. R.; Carroll, P. J.; Steigerwald, M. L.; Brus, L. E.; Winge, D. R. Biosynthesis of cadmium-sulfide quantum semiconductor crystallites. Nature 1989, 338, 596–597.

69

Wong, K. K. W.; Mann, S. Biomimetic synthesis of cadmium sulfide-ferritin nanocomposites. Adv. Mater. 1996, 8, 928–932.

70

Naito, M.; Iwahori, K.; Miura, A.; Yamane, M.; Yamashita, I. Circularly polarized luminescent CdS quantum dots prepared in a protein nanocage. Angew. Chem. Int. Ed. 2010, 49, 7006–7009.

71

Zheng, Y. G.; Yang, Z. C.; Ying, J. Y. Aqueous synthesis of glutathione-capped ZnSe and Zn1–xCdxSe alloyed quantum dots. Adv. Mater. 2007, 19, 1475–1479.

72

Arslan, I.; Yates, T. J. V.; Browning, N. D.; Midgley, P. A. Embedded nanostructures revealed in three dimensions. Science 2005, 309, 2195–2198.

73

Li, H. Y.; Xin, H. L.; Muller, D. A.; Estroff, L. A. Visualizing the 3D internal structure of calcite single crystals grown in agarose hydrogels. Science 2009, 326, 1244–1247.

74

Chen, J. L.; Zhu, C. Q. Functionalized cadmium sulfide quantum dots as fluorescence probe for silver ion determination. Anal. Chim. Acta 2005, 546, 147–153.

75

Han, B. Y.; Yuan, J. P.; Wang, E. K. Sensitive and selective sensor for biothiols in the cell based on the recovered fluorescence of the CdTe quantum dots-Hg(Ⅱ) system. Anal. Chem. 2009, 81, 5569–5573.

Nano Research
Pages 627-634
Cite this article:
Wei H, House S, Wu J, et al. Enhanced and tunable fluorescent quantum dots within a single crystal of protein. Nano Research, 2013, 6(9): 627-634. https://doi.org/10.1007/s12274-013-0348-0

677

Views

24

Crossref

N/A

Web of Science

23

Scopus

1

CSCD

Altmetrics

Received: 13 April 2013
Revised: 24 June 2013
Accepted: 08 July 2013
Published: 31 July 2013
© Tsinghua University Press and Springer-Verlag Berlin Heidelberg 2013
Return