AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Evidence for structural phase transitions and large effective band gaps in quasi-metallic ultra-clean suspended carbon nanotubes

Shun-Wen Chang1( )Rohan Dhall2Moh Amer2Kentaro Sato4Riichiro Saito4Stephen Cronin1,2,3
Department of Physics and AstronomyUniversity of Southern CaliforniaLos AngelesCA90089USA
Department of Electrical EngineeringUniversity of Southern CaliforniaLos AngelesCA90089USA
Department of ChemistryUniversity of Southern CaliforniaLos AngelesCA90089USA
Department of PhysicsTohoku UniversitySendai980-8578Japan
Show Author Information

Graphical Abstract

Abstract

We report evidence for a structural phase transition in individual suspended metallic carbon nanotubes by examining their Raman spectra and electron transport under electrostatic gate potentials. The current-gate voltage characteristics reveal anomalously large quasi-metallic band gaps as high as 240 meV, the largest reported to date. For nanotubes with band gaps larger than 200 meV, we observe a pronounced M-shape profile in the gate dependence of the 2D band (or G' band) Raman frequency. The pronounced dip (or softening) of the phonon mode near zero gate voltage can be attributed to a structural phase transition (SPT) that occurs at the charge neutrality point (CNP). The 2D band Raman intensity also changes abruptly near the CNP, providing further evidence for a change in the lattice symmetry and a possible SPT. Pronounced non-adiabatic effects are observed in the gate dependence of the G band Raman mode, however, this behavior deviates from non-adiabatic theory near the CNP. For nanotubes with band gaps larger than 200 meV, non-adiabatic effects should be largely suppressed, which is not observed experimentally. This data suggests that these large effective band gaps are primarily caused by a SPT to an insulating state, which causes the large modulation observed in the conductance around the CNP. Possible mechanisms for this SPT are discussed, including electron-electron (e.g., Mott) and electron-phonon (e.g., Peierls) driven transitions.

References

1

Cao, J. E.; Wang, Q.; Dai, H. J. Electron transport in very clean, as-grown suspended carbon nanotubes. Nat. Mater. 2005, 4, 745-749.

2

Bushmaker, A. W.; Deshpande, V. V.; Bockrath, M. W.; Cronin, S. B. Direct observation of mode selective electron− phonon coupling in suspended carbon nanotubes. Nano Lett. 2007, 7, 3618-3622.

3

Dhall, R.; Chang, S. -W.; Liu, Z. W.; Cronin, S. B. Pronounced electron-phonon interactions in ultraclean suspended carbon nanotubes. Phys. Rev. B 2012, 86, 045427.

4

Bushmaker, A. W.; Deshpande, V. V.; Hsieh, S.; Bockrath, M. W.; Cronin, S. B. Direct observation of Born-Oppenheimer approximation breakdown in carbon nanotubes. Nano Lett. 2009, 9, 607-611.

5

Deshpande, V. V.; Bockrath, M. The one-dimensional Wigner crystal in carbon nanotubes. Nat. Phys. 2008, 4, 314-318.

6

Deshpande, V. V.; Chandra, B.; Caldwell, R.; Novikov, D. S.; Hone, J.; Bockrath, M. Mott insulating state in ultraclean carbon nanotubes. Science 2009, 323, 106-110.

7

Amer, M. R.; Bushmaker, A.; Cronin, S. B. The influence of substrate in determining the band gap of metallic carbon nanotubes. Nano Lett. 2012, 12, 4843-4847.

8

Cronin, S. B.; Barnett, R.; Tinkham, M.; Chou, S. G.; Rabin, O.; Dresselhaus, M. S.; Swan, A. K.; Ünlü, M. S.; Goldberg, B. B. Electrochemical gating of individual single-wall carbon nanotubes observed by electron transport measurements and resonant Raman spectroscopy. Appl. Phys. Lett. 2004, 84, 2052-2054.

9

Das, A.; Sood, A. K.; Govindaraj, A.; Marco Saitta, A.; Lazzeri, M.; Mauri, F.; Rao, C. N. R. Doping in carbon nanotubes probed by Raman and transport measurements. Phys. Rev. Lett. 2007, 99, 136803.

10

Tsang, J. C.; Freitag, M.; Perebeinos, V.; Liu, J.; Avouris, P. Doping and phonon renormalization in carbon nanotubes. Nat. Nanotechnol. 2007, 2, 725-730.

11

Farhat, H.; Son, H.; Samsonidze, G. G.; Reich, S.; Dresselhaus, M. S.; Kong, J. Phonon softening in individual metallic carbon nanotubes due to the Kohn anomaly. Phys. Rev. Lett. 2007, 99, 145506.

12

Sasaki, K.; Farhat, H.; Saito, R.; Dresselhaus, M. S. Kohn anomaly in Raman spectroscopy of single wall carbon nanotubes. Physica E 2010, 42, 2005-2015.

13

Mott, N. F. Metal-insulator transition. Rev. Mod. Phys. 1968, 40 677-683.

14

Katsufuji, T.; Tokura, Y. Anomalous variation of phonon Raman intensities near the metal-to-Mott-insulator transition in titanium-oxide systems. Phys. Rev. B 1994, 50, 2704-2707.

15

Bushmaker, A. W.; Deshpande, V. V.; Hsieh, S.; Bockrath, M. W.; Cronin, S. B. Large modulations in the intensity of Raman-scattered light from pristine carbon nanotubes. Phys. Rev. Lett. 2009, 103, 067401.

16

Pop, E.; Mann, D.; Cao, J. E.; Wang, Q.; Goodson, K.; Dai, H. J. Negative differential conductance and hot phonons in suspended nanotube molecular wires. Phys. Rev. Lett. 2005, 95, 155505.

17

Jorio, A.; Pimenta, M.; Souza Filho, A.; Saito, R.; Dresselhaus, G.; Dresselhaus, M. Characterizing carbon nanotube samples with resonance Raman scattering. New J. Phys. 2003, 5 139.

18

Bushmaker, A. W.; Deshpande, V. V.; Hsieh, S.; Bockrath, M. W.; Cronin, S. B. Gate voltage controllable non-equilibrium and non-ohmic behavior in suspended carbon nanotubes. Nano Lett. 2009, 9, 2862-2866.

19

Zhao, Y.; Liao, A.; Pop, E. Multiband mobility in semiconducting carbon nanotubes. IEEE Electr. Device L. IEEE 2009, 30, 1078-1080.

20

Bushmaker, A.; Chang, C.; Deshpande, V.; Amer, M.; Bockrath, M.; Cronin, S. Memristive behavior observed in a defected single-walled carbon nanotube. IEEE T. Nanotechnol. 2011, 10, 582-586.

21

Das, A.; Pisana, S.; Chakraborty, B.; Piscanec, S.; Saha, S. K.; Waghmare, U. V.; Novoselov, K. S.; Krishnamurthy, H. R.; Geim, A. K.; Ferrari, A. C.; et al. Monitoring dopants by Raman scattering in an electrochemically top-gated graphene transistor. Nat. Nanotechnol. 2008, 3, 210-215.

22

Caudal, N.; Saitta, A. M.; Lazzeri, M.; Mauri, F. Kohn anomalies and nonadiabaticity in doped carbon nanotubes. Phys. Rev. B 2007, 75, 115423.

23

Piscanec, S.; Lazzeri, M.; Robertson, J.; Ferrari, A. C.; Mauri, F. Optical phonons in carbon nanotubes: Kohn anomalies, Peierls distortions, and dynamic effects. Phys. Rev. B 2007, 75, 035427.

24

Araujo, P. T.; Mafra, D. L.; Sato, K.; Saito, R.; Kong, J.; Dresselhaus, M. S. Phonon self-energy corrections to nonzero wave-vector phonon modes in single-layer craphene. Phys. Rev. Lett. 2012, 109, 046801.

25

Wu, Y.; Huang, M. Y.; Wang, F.; Huang, X. M. H.; Rosenblatt, S.; Huang, L. M.; Yan, H. G.; O'Brien, S. P.; Hone, J.; Heinz, T. F. Determination of the Young's modulus of structurally defined carbon nanotubes. Nano Lett. 2008, 8, 4158-4161.

26

Cronin, S. B.; Swan, A. K.; Ünlü, M. S.; Goldberg, B. B.; Dresselhaus, M. S.; Tinkham, M. Measuring the uniaxial strain of individual single-wall carbon nanotubes: Resonance Raman spectra of atomic-force-microscope modified single-wall nanotubes. Phys. Rev. Lett. 2004, 93, 167401.

27

Cronin, S. B.; Swan, A. K.; Ünlü, M. S.; Goldberg, B. B.; Dresselhaus, M. S.; Tinkham, M. Measuring the uniaxial strain of individual single-wall carbon nanotubes: Resonance Raman spectra of atomic-force-microscope modified single-wall nanotubes. Phys. Rev. Lett. 2004, 93, 167401.

28

Sapmaz, S.; Blanter, Y. M.; Gurevich, L.; Van der Zant, H. S. J. Carbon nanotubes as nanoelectromechanical systems. Phys. Rev. B 2003, 67, 235414.

29

Ouyang, M.; Huang, J. -L.; Cheung, C. L.; Lieber, C. M. Energy gaps in "metallic" single-walled carbon nanotubes. Science 2001, 292, 702-705.

30

Kane, C. L.; Mele, E. J. Size, shape, and low energy electronic structure of carbon nanotubes. Phys. Rev. Lett. 1997, 78, 1932-1935.

31

Cronin, S. B.; Swan, A. K.; Ünlü, M. S.; Goldberg, B. B.; Dresselhaus, M. S.; Tinkham, M. Resonant Raman spectroscopy of individual metallic and semiconducting single-wall carbon nanotubes under uniaxial strain. Phys. Rev. B 2005, 72, 035425.

32

Yang, L.; Anantram, M. P.; Han, J.; Lu, J. P. Band-gap change of carbon nanotubes: Effect of small uniaxial and torsional strain. Phys. Rev. B 1999, 60, 13874-13878.

33

Balents, L.; Fisher, M. P. A. Correlation effects in carbon nanotubes. Phys. Rev. B 1997, 55, R11973-R11976.

34

Krotov, Y. A.; Lee, D. -H.; Louie, S. G. Low energy properties of (n, n) carbon nanotubes. Phys. Rev. Lett. 1997, 78, 4245-4248.

35

Barnett, R.; Demler, E.; Kaxiras, E. Electron-phonon interaction in ultrasmall-radius carbon nanotubes. Phys. Rev. B 2005, 71, 035429.

36

Connetable, D.; Rignanese, G. M.; Charlier, J. C.; Blase, X. Room temperature Peierls distortion in small diameter nanotubes. Phys. Rev. Lett. 2005, 94, 015503.

37

Dumont, G.; Boulanger, P.; Côté, M.; Ernzerhof, M. Peierls instability in carbon nanotubes: A first-principles study. Phys. Rev. B 2010, 82, 035419.

38

Saito, R.; Fujita, M.; Dresselhaus, G.; Dresselhaus, M. S. Electronic-structure of graphene tubules based on C-60. Phys. Rev. B 1992, 46, 1804-1811.

39

Kim, H. -T.; Chae, B. -G.; Youn, D. -H.; Maeng, S. -L.; Kim, G.; Kang, K. -Y.; Lim, Y. -S. Mechanism and observation of Mott transition in VO2-based two- and three-terminal devices. New J. Phys. 2004, 6, 52.

40

Peierls, R. More Surprises in Theoretical Physics; Princeton University Press: Princeton, 1991.

41

Yin, L. -C.; Cheng, H. -M.; Saito, R.; Dresselhaus, M. S. Fermi level dependent optical transition energy in metallic single-walled carbon nanotubes. Carbon 2011, 49, 4774-4780.

42

Vercosa, D. G.; Barros, E. B.; Souza Filho, A. G.; Mendes Filho, J.; Samsonidze, G. G.; Saito, R.; Dresselhaus, M. S. Torsional instability of chiral carbon nanotubes. Phys. Rev. B 2010, 81, 165430.

Nano Research
Pages 736-744
Cite this article:
Chang S-W, Dhall R, Amer M, et al. Evidence for structural phase transitions and large effective band gaps in quasi-metallic ultra-clean suspended carbon nanotubes. Nano Research, 2013, 6(10): 736-744. https://doi.org/10.1007/s12274-013-0351-5

594

Views

5

Crossref

N/A

Web of Science

7

Scopus

0

CSCD

Altmetrics

Received: 07 June 2013
Revised: 17 July 2013
Accepted: 17 July 2013
Published: 07 August 2013
© Tsinghua University Press and Springer-Verlag Berlin Heidelberg 2013
Return