Discover the SciOpen Platform and Achieve Your Research Goals with Ease.
Search articles, authors, keywords, DOl and etc.
We present measurements of the in situ, microscopic architecture of a self-assembled bilayer at the interface between a regularly nanopatterned surface and an aqueous sub-phase using neutron reflectometry. The substrate is patterned with a rectangular array of nanoscale holes. Because of the high quality of the pattern, using neutron reflectometry, we are able to map the surface-normal density distribution of the patterned silicon, the penetration of water into the pattern, and the distribution of a deposited film inside and outside of the etched holes. In this study, 1, 2-dilauroyl-sn-glycero-3-phosphocholine (DLPC) single bilayers were deposited on the hydrophilic patterned surface. For bilayers deposited either by vesicle fusion (VF) or by the Langmuir–Schaefer (L–S) technique, the most consistent model found to fit the data shows that the lipids form bilayer coatings on top of the substrate as well as the bottoms of the holes in an essentially conformal fashion. However, while there is a single bilayer on the unetched silicon surface, the lipids coating the bottoms of the holes form a complex bimodal structure consistent with a rough surface produced by the etching process. This study provides insight into film transfer both outside and inside regular nanopatterned features.
Sackmann, E. Supported membranes: Scientific and practical applications. Science 1996, 271, 43–48.
Novakova, E.; Giewekemeyer, K.; Salditt, T. Structure of two-component lipid membranes on solid support: An X-ray reflectivity study. Phys. Rev. E 2006, 74, 051911.
Watkins, E. B.; Miller, C. E.; Mulder, D. J.; Kuhl, T. L.; Majewski, J. Structure and orientational texture of self-organizing lipid bilayers. Phys. Rev. Lett. 2009, 102, 238101.
Miller, C. E.; Majewski, J.; Kuhl, T. L. Characterization of single biological membranes at the solid–liquid interface by X-ray reflectivity. Colloid Surface A 2006, 284–285, 434–439.
Doshi, D. A.; Dattelbaum, A. M.; Watkins, E. B.; Brinker, C. J.; Swanson, B. I.; Shreve, A. P.; Parikh, A. N.; Majewski, J. Neutron reflectivity study of lipid membranes assembled on ordered nanocomposite and nanoporous silica thin films. Langmuir 2005, 21, 2865–2870.
Baker, S. M.; Kolthammer, W. S.; Tan, J. B.; Smith, G. S. Nanoporous thin films and porous inorganic substrates for lipid bilayer support materials. Z. Kristallogr. 2004, 219, 179–185.
Gerelli, Y.; Porcar, L.; Fragneto, G. Lipid rearrangement in DSPC/DMPC bilayers: A neutron reflectometry study. Langmuir 2012, 28, 15922–15928.
Oleson, T. A.; Sahai, N.; Wesolowski, D. J.; Dura, J. A.; Majkrzak, C. F.; Giuffre, A. J. Neutron reflectivity study of substrate surface chemistry effects on supported phospholipid bilayer formation in (1120) sapphire. J. Colloid Interf. Sci. 2012, 370, 192–200.
Wong, J. Y.; Majewski, J.; Seitz, M.; Park, C. K.; Israelachvili, J. N.; Smith, G. S. Polymer-cushioned bilayers. I. A structural study of various preparation methods using neutron reflectometry. Biophys. J. 1999, 77, 1445–1457.
Smith, H. L.; Jablin, M. S.; Vidyasagar, A.; Saiz, J.; Watkins, E.; Toomey, R.; Hurd, A. J.; Majewski, J. Model lipid membranes on a tunable polymer cushion. Phys. Rev. Lett. 2009, 102, 228102.
Kaufmann, M.; Jia, Y. F.; Werner, C.; Pompe, T. Weakly coupled lipid bilayer membranes on multistimuli-responsive poly(N-isopropylacrylamide) copolymer cushions. Langmuir 2011, 27, 513–516.
Mey, I.; Steinem, C.; Janshoff, A. Biomimetic functionalization of porous substrates: Towards model systems for cellular membranes. J. Mater. Chem. 2012, 22, 19348–19356.
Kumar, K.; Isa, L.; Egner, A.; Schmidt, R.; Textor, M.; Reimhult, E. Formation of nanopore-spanning lipid bilayers through liposome fusion. Langmuir 2011, 27, 10920–10928.
Mager, M. D.; Melosh, N. A. Nanopore-spanning lipid bilayers for controlled chemical release. Adv. Mater. 2008, 20, 4423–4427.
Kuhl, T. L.; Majewski, J.; Wong, J. Y.; Steinberg, S.; Leckband, D. E.; Israelachvili, J. N.; Smith, G. S. A neutron reflectivity study of polymer-modified phospholipid monolayers at the solid–solution interface: Polyethylene glycol–lipids on silane-modified substrates. Biophys. J. 1998, 75, 2352–2362.
Jung, S. Y.; Holden, M. A.; Cremer, P. S.; Collier, C. P. Two-component membrane lithography via lipid backfilling. ChemPhysChem 2005, 6, 423–426.
Ankner, J. F.; Rehm, C. Time-dependent measurements at the SNS liquids reflectometer. Physica B 2003, 336, 68–74.
Tolan, M.; Vacca, G.; Sinha, S. K.; Li, Z.; Rafailovich, M.; Sokolov, J.; Lorenz, H.; Kotthaus, J. P. X-ray-diffraction from mesoscopic systems—Thin-films on rough surfaces. J. Phys. D: Appl. Phys. 1995, 28, A231–A235.
Tolan, M.; Vacca, G.; Sinha, S. K.; Li, Z.; Rafailovich, M. H.; Sokolov, J.; Lorenz, H.; Kotthaus, J. P. Si/Ge films on laterally structured surfaces: An X-ray study of conformal roughness. Appl. Phys. Lett. 1996, 68, 191–193.
Russell, T. P. X-ray and neutron reflectivity for the investigation of polymers. Mater. Sci. Rep. 1990, 5, 171–271.
Smith, G. S.; Majkrzak, C. F. Neutron reflectometry. In International Tables for Crystallography. Prince, E.; Wilson, A. J. C., Eds.; Kluwer Academic: Boston, 1999; pp 126–130.
Richardson, R. M.; Webster, J. R. P.; Zarbakhsh, A. Study of off-specular neutron reflectivity using a model system. J. Appl. Cryst. 1997, 30, 943–947.
Toperverg, B. P. Specular reflection and off-specular scattering of polarized neutrons. Physica B 2001, 297, 160–168.
Smith, G. S.; Skidmore, C. B.; Howe, P. M.; Majewski, J. Diffusion, evaporation, and surface enrichment of a plasticizing additive in an annealed polymer thin film. J. Polym. Sci. Pol. Phys. 2004, 42, 3258–3266.
Wallace, W. E.; Tan, N. C. B.; Wu, W. L.; Satija, S. Mass density of polystyrene thin films measured by twin neutron reflectivity. J. Chem. Phys. 1998, 108, 3798–3804.
Kucerka, N.; Liu, Y.; Chu, N.; Petrache, H. I.; Tristram-Nagle, S.; Nagle, J. F. Structure of fully hydrated fluid phase DMPC and DLPC lipid bilayers using X-ray scattering from oriented multilamellar arrays and from unilamellar vesicles. Biophys. J. 2005, 88, 2626–2637.
Hayakawa, T.; Suzuki, T.; Uesugi, T.; Mitsushima, Y. Mechanism of residue formation in silicon trench etching using a bromine-based plasma. Jpn. J. Appl. Phys. 1998, 37, 5–9.
Sivia, D. S.; Hamilton, W. A.; Smith, G. S.; Rieker, T. P.; Pynn, R. A novel experimental procedure for removing ambiguity from the interpretation of neutron and X-ray reflectivity measurements: "Speckle holography". J. Appl. Phys. 1991, 70, 732–738.