AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Composition-dependent ultra-high photoconductivity in ternary CdSxSe1–x nanobelts as measured by optical pump-terahertz probe spectroscopy

Hongwei Liu1,2Junpeng Lu1( )Minrui Zheng1Sing Hai Tang1Xinhai Zhang2( )Chorng Haur Sow1( )
Department of Physics, 2 Science Drive 3 National University of Singapore 117542 Singapore
Institute of Materials Research and Engineering Agency for Science, Technology and Research (A*STAR), 3 Research Link 117602 Singapore
Show Author Information

Graphical Abstract

Abstract

We employ optical pump-terahertz probe spectroscopy to investigate the composition-dependent photoconductivity in ternary CdSxSe1–x nanobelts. The observed carrier dynamics of CdS nanobelts display much shorter lifetime than those of ternary CdSxSe1–x nanobelts. This indicates the implementation of CdS nanobelts as ultrafast switching devices with a switching speed potentially up to 46.7 GHz. Surprisingly, ternary CdSxSe1–x nanobelts are found to exhibit much higher photoconductivity than binary CdS and CdSe. This is attributed to the higher photocarrier densities in ternary compounds. In addition, the presence of Se in samples resulted in prominent CdSe-like transverse optical (TO) phonon modes due to electron–phonon interactions. The strength of this mode shows a large drop upon photoexcitation but recovers gradually with time. These results demonstrated that growth of ternary nanostructures can be utilized to alleviate the high surface defect density in nanostructures and improve their photoconductivity.

References

1

Tian, B.; Zheng, X.; Kempa, T. J.; Fang, Y.; Yu, N.; Yu, G.; Huang, J.; Lieber, C. M. Coaxial silicon nanowires as solar cells and nanoelectronic power sources. Nature 2007, 449, 885–889.

2

Yan, R. X.; Gargas, D.; Yang, P. D. Nanowire photonics. Nat. Photon. 2009, 3, 569–576.

3

Cao, L. Y.; White, J. S.; Park, J. -S.; Schuller, J. A.; Clemens, B. M.; Brongersma, M. L. Engineering light absorption in semiconductor nanowire devices. Nat. Mater. 2009, 8, 643–647.

4

Dietl, T.; Ohno, H. Engineering magnetism in semiconductors. Mater. Today 2006, 9, 18–26.

5

Wang, J.; Gudiksen, M. S.; Duan, X.; Cui, Y.; Lieber, C. M. Highly polarized photoluminescence and photodetection from single indium phosphide nanowires. Science 2001, 293, 1455–1457.

6

Kelzenberg, M. D.; Turner-Evans, D. B.; Kayes, B. M.; Filler, M. A.; Putnam, M. C.; Lewis, N. S.; Atwater, H. A. Photovoltaic measurements in single-nanowire silicon solar cells. Nano Lett. 2008, 8, 710–714.

7

Cui, Y.; Wei, Q. Q.; Park, H.; Lieber, C. M. Nanowire nanosensors for highly sensitive and selective detection of biological and chemical species. Science 2001, 293, 1289–1292.

8

Ahn, Y. H.; Park, J. Efficient visible light detection using individual germanium nanowire field effect transistors. Appl. Phys. Lett. 2007, 91, 162102.

9

Li, Q. H.; Liang, Y. X.; Wan, Q.; Wang, T. H. Oxygen sensing characteristics of individual ZnO nanowire transistors. Appl. Phys. Lett. 2004, 85, 6389–6391.

10

Li, L.; Lu, H.; Yang, Z. Y.; Tong, L. M.; Bando, Y.; Golberg, D. Bandgap-graded CdSxSe1–x nanowires for high-performance field-effect transistors and solar cells. Adv. Mater. 2013, 25, 1109–1113.

11

Fang, X. S.; Bando, Y.; Liao, M. Y.; Gautam, U. K.; Zhi, C. Y.; Dierre, B.; Liu, B. D.; Zhai, T. Y.; Sekiguchi, T.; Koide, Y.; et al. Single-crystalline ZnS nanobelts as ultraviolet-light sensors. Adv. Mater. 2009, 21, 2034–2039.

12

Hu, L. H.; Sun, K. Q; Peng, Q.; Xu, B. O.; Li, Y. D. Surface active sites on Co3O4 nanobelt and nanocube model catalysts for CO oxidation. Nano Res. 2010, 3, 363–368.

13

Liao, Z. -M.; Lu, Y.; Xu, J.; Zhang, J. -M.; Yu, D. -P. Temperature dependence of photoconductivity and persistent photoconductivity of single ZnO nanowires. Appl. Phys. A: Mater. Sci. Proc. 2009, 95, 363–366.

14

Tamang, R.; Varghese, B.; Mhaisalkar, S. G.; Tok, E. S.; Sow, C. H. Probing the photoresponse of individual Nb2O5 nanowires with global and localized laser beam irradiation. Nanotechnology 2011, 22, 115202.

15

Zhai, T. Y.; Fang, X. S.; Liao, M. Y.; Xu, X. J.; Zeng, H. B.; Yoshio, B.; Golberg, D. A comprehensive review of one-dimensional metal-oxide nanostructure photodetectors. Sensors 2009, 9, 6504–6529.

16

Mondal, S. P.; Ray, S. K. Enhanced broadband photoresponse of Ge/CdS nanowire radial heterostructures. Appl. Phys. Lett. 2009, 94, 223119-3.

17

Soci, C.; Zhang, A.; Xiang, B.; Dayeh, S. A.; Aplin, D. P. R.; Park, J.; Bao, X. Y.; Lo, Y. H.; Wang, D. ZnO nanowire UV photodetectors with high internal gain. Nano Lett. 2007, 7, 1003–1009.

18

Hu, L. F.; Yan, J.; Liao, M. Y.; Xiang, H. J.; Gong, X. G.; Zhang, L.; Fang, X. S. An optimized ultraviolet-a light photodetector with wide-range photoresponse based on ZnS/ZnO biaxial nanobelt. Adv. Mater. 2012, 24, 2305–2309.

19

Zhao, L. J.; Hu, L. F.; Fang, X. S. Growth and device application of CdSe nanostructures. Adv. Funct. Mater. 2012, 22, 1551–1566.

20

Fang, X. S.; Hu, L. F.; Huo, K. F.; Gao, B.; Zhao, L. J.; Liao, M. Y.; Chu, P. K.; Bando, Y.; Golberg, D. New ultraviolet photodetector based on individual Nb2O5 nanobelts. Adv. Funct. Mater. 2011, 21, 3907–3915.

21

Thunich, S.; Prechtel, L.; Spirkoska, D.; Abstreiter, G.; Morral, A. F.; Holleitner, A. W. Photocurrent and photoconductance properties of a GaAs nanowire. Appl. Phys. Lett. 2009, 95, 083111.

22

Pettersson, H.; Trägårdh, J.; Persson, A. I.; Landin, L.; Hessman, D.; Samuelson, L. Infrared photodetectors in heterostructure nanowires. Nano Lett. 2006, 6, 229–232.

23

Beard, M. C.; Turner, G. M.; Schmuttenmaer, C. A. Size-dependent photoconductivity in CdSe nanoparticles as measured by time-resolved terahertz spectroscopy. Nano Lett. 2002, 2, 983–987.

24

Parkinson, P.; Lloyd-Hughes, J.; Gao, Q.; Tan, H. H.; Jagadish, C.; Johnston, M. B.; Herz, L. M. Transient terahertz conductivity of GaAs nanowires. Nano Lett. 2007, 7, 2162–2165.

25

Beard, M. C.; Turner, G. M.; Schmuttenmaer, C. A. Transient photoconductivity in GaAs as measured by time-resolved terahertz spectroscopy. Phys. Rev. B 2000, 62, 15764–15777.

26

Schmuttenmaer, C. A. Exploring dynamics in the far-infrared with terahertz spectroscopy. Chem. Rev. 2004, 104, 1759–1780.

27

Nienhuys, H. -K.; Sundstrom, V. Influence of plasmons on terahertz conductivity measurements. Appl. Phys. Lett. 2005, 87, 012101.

28

Jepsen, P. U.; Schairer, W.; Libon, I. H.; Lemmer, U.; Hecker, N. E.; Birkholz, M.; Lips, K.; Schall, M. Ultrafast carrier trapping in microcrystalline silicon observed in optical pump—Terahertz probe measurements. Appl. Phys. Lett. 2001, 79, 1291–1293.

29

Cooke, D. G.; MacDonald, A. N.; Hryciw, A.; Wang, J.; Li, Q.; Meldrum, A.; Hegmann, F. A. Transient terahertz conductivity in photoexcited silicon nanocrystal films. Phys. Rev. B 2006, 73, 193311.

30

Ahn, H.; Ku, Y. P.; Wang, Y. C.; Chuang, C. H.; Gwo, S.; Pan, C. -L. Terahertz spectroscopic study of vertically aligned InN nanorods. Appl. Phys. Lett. 2007, 91, 163105.

31

Kaindl, R. A.; Carnahan, M. A.; Hägele, D.; Lövenich, R.; Chemla, D. S. Ultrafast terahertz probes of transient conducting and insulating phases in an electron-hole gas. Nature 2003, 423, 734–738.

32

Beard, M. C.; Turner, G. M.; Murphy, J. E.; Micic, O. I.; Hanna, M. C.; Nozik, A. J.; Schmuttenmaer, C. A. Electronic coupling in InP nanoparticle arrays. Nano Lett. 2003, 3, 1695–1699.

33

George, P. A.; Strait, J.; Dawlaty, J.; Shivaraman, S.; Chandrashekhar, M.; Rana, F.; Spencer, M. G. Ultrafast optical-pump terahertz-probe spectroscopy of the carrier relaxation and recombination dynamics in epitaxial graphene. Nano Lett. 2008, 8, 4248–4251.

34

Strait, J. H.; Wang, H.; Shivaraman, S.; Shields, V.; Spencer, M.; Rana, F. Very slow cooling dynamics of photoexcited carriers in graphene observed by optical-pump terahertz-probe spectroscopy. Nano Lett. 2011, 11, 4902–4906.

35

Jnawali, G.; Rao, Y.; Yan, H.; Heinz, T. F. Observation of a transient decrease in terahertz conductivity of single-layer graphene induced by ultrafast optical excitation. Nano Lett. 2013, 13, 524–530.

36

Docherty, C. J.; Lin, C. -T.; Joyce, H. J.; Nicholas, R. J.; Herz, L. M.; Li, L. -J.; Johnston, M. B. Extreme sensitivity of graphene photoconductivity to environmental gases. Nat. Commun. 2012, 3, 1228.

37

Baxter, J. B.; Schmuttenmaer, C. A. Conductivity of ZnO nanowires, nanoparticles, and thin films using time-resolved terahertz spectroscopy. J. Phys. Chem. B 2006, 110, 25229–25239.

38

Lu, J. P.; Sun, C.; Zheng, M. R.; Nripan, M.; Liu, H. W.; Chen, G. S.; Zhang, X. H.; Subodh G, M.; Sow, C. H. Facile one-step synthesis of CdSxSe1–x nanobelts with uniform and controllable stoichiometry. J. Phys. Chem. C 2011, 115, 19538–19545.

39

Pan, A. L.; Zhou, W. C.; Leong, E. S. P.; Liu, R. B.; Chin, A. H.; Zou, B. S.; Ning, C. Z. Continuous alloy-composition spatial grading and superbroad wavelength-tunable nanowire lasers on a single chip. Nano Lett. 2009, 9, 784–788.

40

Li, G. H.; Jiang, Y.; Wang, Y.; Wang, C.; Sheng, Y. P.; Jie, J. S.; Zapien, J. A.; Zhang, W. J.; Lee, S. -T. Synthesis of CdSxSe1–x nanoribbons with uniform and controllable compositions via sulfurization: Optical and electronic properties studies. J. Phys. Chem. C 2009, 113, 17183–17188.

41

Pan, A. L.; Wang, X.; He, P. B.; Zhang, Q. L.; Wan, Q.; Zacharias, M.; Zhu, X.; Zou, B. S. Color-changeable optical transport through Se-doped CdS 1d nanostructures. Nano Lett. 2007, 7, 2970–2975.

42

Liu, H. W.; Lu, J. P.; Teoh, H. F.; Li, D. C.; Feng, Y. P.; Tang, S. H.; Sow, C. H.; Zhang, X. H. Defect engineering in CdSxSe1–x nanobelts: An insight into carrier relaxation dynamics via optical pump–terahertz probe spectroscopy. J. Phys. Chem. C 2012, 116, 26036–26042.

43

Beard, M. C.; Turner, G. M.; Schmuttenmaer, C. A. Subpicosecond carrier dynamics in low-temperature grown GaAs as measured by time-resolved terahertz spectroscopy. J. Appl. Phys. 2001, 90, 5915–5923.

44

Liu, H. W.; Lu, J. P.; Fan, H. M.; Sow, C. H.; Tang, S. H.; Zhang, X. H. Temperature and composition dependence of photoluminescence dynamics in CdSxSe1–x (0≤x≤1) nanobelts. J. Appl. Phys. 2012, 111, 073112.

45

Tsai, T. -R.; Chen, S. -J.; Chang, C. -F.; Hsu, S. -H.; Lin, T. -Y.; Chi, C. -C. Terahertz response of GaN thin films. Opt. Express 2006, 14, 4898–4907.

46

García-Vidal, F. J.; Pitarke, J. M.; Pendry, J. B. Effective medium theory of the optical properties of aligned carbon nanotubes. Phys. Rev. Lett. 1997, 78, 4289–4292.

47

Weissker, H. C.; Furthmüller, J.; Bechstedt, F. Validity of effective-medium theory for optical properties of embedded nanocrystallites from ab-initio supercell calculations. Phys. Rev. B 2003, 67, 165322.

48

Tolstoy, V. P.; Chernyshova, I. V.; Skryshevsky, V. A. Handbook of infrared spectroscopy of ultrathin films; John Wiley & Sons, Inc: USA, 2003.

49

Lu, J. P.; Liu, H. W.; Sun, C.; Zheng, M. R.; Nripan, M.; Chen, G. S.; Subodh, G. M.; Zhang, X. H.; Sow, C. H. Optical and electrical applications of ZnSxSe1–x nanowires-network with uniform and controllable stoichiometry. Nanoscale 2012, 4, 976–981.

50

Parayanthal, P.; Pollak, F. H. Raman scattering in alloy semiconductors: "Spatial correlation" model. Phys. Rev. Lett. 1984, 52, 1822–1825.

51

Chang, I. F.; Mitra, S. S. Application of a modified random-element-isodisplacement model to long-wavelength optic phonons of mixed crystals. Phys. Rev. 1968, 172, 924–933.

52

Yong, C. K.; Noori, K.; Gao, Q.; Joyce, H. J.; Tan, H. H.; Jagadish, C.; Giustino, F.; Johnston, M. B.; Herz, L. M. Strong carrier lifetime enhancement in GaAs nanowires coated with semiconducting polymer. Nano Lett. 2012, 12, 6293–6301.

53

Joyce, H. J.; Wong-Leung, J.; Yong, C. -K.; Docherty, C. J.; Paiman, S.; Gao, Q.; Tan, H. H.; Jagadish, C.; Lloyd-Hughes, J.; Herz, L. M.; et al. Ultralow surface recombination velocity in InP nanowires probed by terahertz spectroscopy. Nano Lett. 2012, 12, 5325–5330.

54

Parkinson, P.; Dodson, C.; Joyce, H. J.; Bertness, K. A.; Sanford, N. A.; Herz, L. M.; Johnston, M. B. Noncontact measurement of charge carrier lifetime and mobility in GaN nanowires. Nano Lett. 2012, 12, 4600–4604.

55

Joyce, H. J.; Gao, Q.; Hoe Tan, H.; Jagadish, C.; Kim, Y.; Zou, J.; Smith, L. M.; Jackson, H. E.; Yarrison-Rice, J. M.; Parkinson, P.; et al. Ⅲ–Ⅴ semiconductor nanowires for optoelectronic device applications. Prog. Quant. Electron. 2011, 35, 23–75.

56

Baxter, J. B.; Schmuttenmaer, C. A. Carrier dynamics in bulk ZnO II. Transient photoconductivity measured by time-resolved terahertz spectroscopy. Phys. Rev. B 2009, 80, 235206.

57

Sung, T. K.; Kang, J. H.; Jang, D. M.; Myung, Y.; Jung, G. B.; Kim, H. S.; Jung, C. S.; Cho, Y. J.; Park, J.; Lee, C. -L. CdSSe layer-sensitized TiO2 nanowire arrays as efficient photoelectrodes. J. Mater. Chem. 2011, 21, 4553–4561.

58

Anderson, P. W. Absence of diffusion in certain random lattices. Phys. Rev. 1958, 109, 1492–1505.

59

Xie, X.; Dai, J. M.; Zhang, X. C. Coherent control of THz wave generation in ambient air. Phys. Rev. Lett. 2006, 96, 075005.

60

Karpowicz, N.; Dai, J.; Lu, X.; Chen, Y.; Yamaguchi, M.; Zhao, H. W.; Zhang, X. C.; Zhang, L. L.; Zhang, C. L.; Price-Gallagher, M.; et al. Coherent heterodyne time-domain spectrometry covering the entire "terahertz gap". Appl. Phys. Lett. 2008, 92, 011131.

61

Lu, J.; Liu, H.; Lim, S. X.; Tang, S. H.; Sow, C. H.; Zhang, X. Transient photoconductivity of ternary CdSSe nanobelts as measured by time-resolved terahertz spectroscopy. J. Phys. Chem. C 2013, 117, 12379–12384.

Nano Research
Pages 808-821
Cite this article:
Liu H, Lu J, Zheng M, et al. Composition-dependent ultra-high photoconductivity in ternary CdSxSe1–x nanobelts as measured by optical pump-terahertz probe spectroscopy. Nano Research, 2013, 6(11): 808-821. https://doi.org/10.1007/s12274-013-0359-x

653

Views

22

Crossref

N/A

Web of Science

22

Scopus

2

CSCD

Altmetrics

Received: 03 July 2013
Revised: 02 August 2013
Accepted: 03 August 2013
Published: 15 August 2013
© Tsinghua University Press and Springer-Verlag Berlin Heidelberg 2013
Return