AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Harvesting vibration energy by a triple-cantilever based triboelectric nanogenerator

Weiqing Yang1,2Jun Chen1Guang Zhu1Xiaonan Wen1Peng Bai1Yuanjie Su1,2Yuan Lin2Zhonglin Wang1,3( )
School of Materials Science and EngineeringGeorgia Institute of TechnologyAtlanta, Georgia, 30332-0245USA
State Key Laboratory of Electronic Thin films and Integrated DevicesUniversity of Electronic Science and Technology of ChinaChengdu610054China
Beijing Institute of Nanoenergy and NanosystemsChinese Academy of Sciences, BeijingChina
Show Author Information

Graphical Abstract

Abstract

Triboelectric nanogenerators (TENG), a unique technology for harvesting ambient mechanical energy based on triboelectric effect, have been proven to be a cost-effective, simple and robust approach for self-powered systems. Here, we demonstrate a rationally designed triple-cantilever based TENG for harvesting vibration energy. With the assistance of nanowire arrays fabricated onto the surfaces of beryllium-copper alloy foils, the newly designed TENG produces an open-circuit voltage up to 101 V and a short-circuit current of 55.7 μA with a peak power density of 252.3 mW/m2. The TENG was systematically investigated and demonstrated as a direct power source for instantaneously lighting up 40 commercial light-emitting diodes. For the first time, a TENG device has been designed for harvesting vibration energy, especially at low frequencies, opening its application as a new energy technology.

Electronic Supplementary Material

Download File(s)
nr-6-12-880_ESM.pdf (594 KB)

References

1

Wang, Z. L.; Song, J. H. Piezoelectric nanogenerators based on zinc oxide nanowire arrays. Science 2006, 312, 242–246.

2

Wang, X. D.; Song, J. H.; Liu, J.; Wang, Z. L. Direct-current nanogenerator driven by ultrasonic waves. Science 2007, 316, 102–105.

3

Zhang, J.; Wu, Z.; Jia, Y. M.; Kan, J. W.; Cheng, G. M. Piezoelectric bimorph cantilever for vibration-producing-hydrogen. Sensors 2013, 13, 367–374.

4
Park, K. I.; Jeong, C. K.; Ryu, J.; Hwang, G. T.; Lee, K. J. Flexible and large-area nanocomposite generator based on lead zirconate titanate particles and carbon nanotubes. Adv. Eng. Mater., in press, DOI: 10.1002/aenm.201300458.https://doi.org/10.1002/aenm.201300458
5

Bai, X. L.; Wen, Y. M.; Yang, J.; Li, P.; Qiu, J.; Zhu, Y. A magnetoelectric energy harvester with the magnetic coupling to enhance the output performance. J. Appl. Phys. 2012, 111, 07A938.

6

Mitcheson, P. D.; Miao, P.; Stark, B. H.; Yeatman, E. M.; Holmes, A. S.; Green, T. C. MEMS electrostatic micropower generator for low frequency operation. Sens. Actuators, A 2004, 115, 523–529.

7

Wang, L.; Yuan, F. G. Vibration energy harvesting by magnetostrictive material. Smart Mater. Struct. 2008, 17, 045009.

8

Wang, Z. L. Self-powered nanosensors and nanosystems. Adv. Mater. 2011, 24, 279–284.

9

Wang, Z. L. Self-powering nanotech. Sci. Am. 2008, 298, 82–87.

10

Fan, F. R.; Tian, Z. Q.; Wang, Z. L. Flexible triboelectric generator! Nano Energy 2012, 1, 328–334.

11

Fan, F. R.; Lin, L.; Zhu, G.; Wu, W. Z.; Zhang, R.; Wang, Z. L. Transparent triboelectric nanogenerators and self-powered pressure sensors based on micropatterned plastic films. Nano Lett. 2012, 12, 3109–3144.

12

Zhu, G.; Pan, C. F.; Guo, W. X.; Chen, C. Y.; Zhou, Y. S.; Yu, R. M.; Wang, Z. L. Triboelectric-generator-driven pulse electrodeposition for micropatterning. Nano Lett. 2012, 12, 4960–4965.

13

Wang, S. H.; Lin, L.; Wang, Z. L. Nanoscale triboelectric-effect-enabled energy conversion for sustainably powering portable electronics. Nano Lett. 2012, 12, 6339–6346.

14

Zhu, G.; Lin, Z. H.; Jing, Q. S.; Bai, P.; Pan, C. F.; Yang, Y.; Zhou, Y. S.; Wang, Z. L. Toward large-scale energy harvesting by a nanoparticle-enhanced triboelectric nanogenerator. Nano Lett. 2013, 13, 847–853.

15

Bai, P.; Zhu, G.; Lin, Z. H.; Jing, Q. S.; Chen, J.; Zhang, G.; Ma, J. S.; Wang, Z. L. Integrated multilayered triboelectric nanogenerator for harvesting biomechanical energy from human motions. ACS Nano 2013, 7, 3713–3719.

16

Zhang, X. S.; Han, M. D.; Wang, R. X.; Zhu, F. Y.; Li, Z. H.; Wang, W.; Zhang, H. X. Frequency-multiplication high-output triboelectric nanogenerator for sustainably powering biomedical microsystems. Nano Lett. 2013, 13, 1168–1172.

17

Zhu, G.; Chen, J.; Liu, Y.; Bai, P.; Zhou, Y. S.; Jing, Q. S.; Pan, C. F.; Wang, Z. L. Linear-grating triboelectric generator based on sliding electrification. Nano Lett. 2013, 13, 2282–2289.

18

Wang, S. H.; Lin, L.; Xie, Y. N.; Jing, Q. S.; Niu, S. M.; Wang, Z. L. Sliding-triboelectric nanogenerators based on in-plane charge-separation mechanism. Nano Lett. 2013, 13, 2226–2233.

19

Lowell, J.; Rose-Innes, A. C. Contact electrification. Adv. Phys. 1980, 29, 947–1023.

20

Castle, G. S. P. Industrial applications of electrostatics: The past, present and future. J. Electrost. 2001, 51–52, 1–7.

21

Yang, X. H.; Zhu, G.; Wang, S. H.; Zhang, R.; Lin, L.; Wu, W. Z.; Wang, Z. L. A self-powered electrochromic device driven by a nanogenerator. Energy Environ. Sci. 2012, 5, 9462–9466.

22

Zhong, J. W.; Zhong, Q. Z.; Fan, F. R.; Zhang, Y.; Wang, S. H.; Hu, B.; Wang, Z. L.; Zhou, J. Finger typing driven triboelectric nanogenerator and its use for instantaneously lighting up LEDs. Nano Energy 2013, 4, 491–497.

23

Horn, R. G.; Smith, D. T. Contact electrification and adhesion between dissimilar materials. Science 1992, 256, 362–364.

24

Sessler, G. M. Topics in Applied Physcs: Electrets; Spring-Verlag Berlin Heidelberg: New York, 1980.

25

Horn, R. G.; Smith, D. T.; Grabbe, A. Contact electrification induced by monolayer modification of a surface and relation to acid base interactions. Nature 1993, 366, 442–443.

26

Baytekin, H. T.; Patashinski, A. Z.; Branicki, M.; Baytekin, B.; Soh, S.; Grzybowski, B. A. The mosaic of surface charge in contact electrification. Science 2011, 333, 308–312.

27

Soh, S.; Kwok, S. W.; Liu, H.; Whitesides, G. M. Contact de-electrification of electrostatically charged polymers. J. Am. Chem. Soc. 2012, 134, 20151–20159.

28

Hu, Y. F.; Zhang, Y.; Xu, C.; Lin, L.; Snyder, R. L.; Wang, Z. L. Self-powered system with wireless data transmission. Nano Lett. 2011, 11, 2572–2577.

29

Cross, J. A. Electrostatics: Principles, problems and applications. In Adam Hilger: Bristol 1987, Chapter 2.

30

Németh, E.; Albrecht, V.; Schulert, G.; Simon, F. Polymer tribo-electric charging: Dependence on thermodynamic surface properties and relative humidity. J. Electrost. 2003, 58, 3–16.

31

Qin, Y.; Wang, X. D.; Wang, Z. L. Microfiber-nanowire hybrid structure for energy scavenging. Nature 2008, 451, 809–813.

32

Yang, R. S.; Qin, Y.; Dai, L. M.; Wang, Z. L. Power generation with laterally-packaged piezoelectric fine wires. Nat. Nanotech. 2008, 4, 34–39.

33

Graff, K. F. Wave Motion in Elestic Solids; Dover: New York, 1991.

Nano Research
Pages 880-886
Cite this article:
Yang W, Chen J, Zhu G, et al. Harvesting vibration energy by a triple-cantilever based triboelectric nanogenerator. Nano Research, 2013, 6(12): 880-886. https://doi.org/10.1007/s12274-013-0364-0

532

Views

217

Crossref

N/A

Web of Science

214

Scopus

10

CSCD

Altmetrics

Received: 30 July 2013
Revised: 15 August 2013
Accepted: 16 August 2013
Published: 12 September 2013
© Tsinghua University Press and Springer-Verlag Berlin Heidelberg 2013
Return