AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Mn atomic layers under inert covers of graphene and hexagonal boron nitride prepared on Rh(111)

Yu Zhang1Yanfeng Zhang1( )Donglin Ma2Qingqing Ji2Wei Fang3Jianping Shi1Teng Gao2Mengxi Liu2Yabo Gao2Yubin Chen2Limei Xu3Zhongfan Liu2( )
Department of Materials Science and EngineeringCollege of EngineeringPeking UniversityBeijing100871China
Center for Nanochemistry (CNC)Beijing National Laboratory for Molecular SciencesState Key Laboratory for Structural Chemistry of Unstable and Stable SpeciesCollege of Chemistry and Molecular EngineeringPeking UniversityBeijing100871China
International Center for Quantum MaterialsPeking UniversityBeijing100871China
Show Author Information

Graphical Abstract

Abstract

Intercalation of metal atoms into the interface of graphene and its supporting substrate has become an intriguing topic for the sake of weakening the interface coupling and constructing metal atomic layers under inert covers. However, this novel behavior has rarely been reported on the analogous hexagonal boron nitride (h-BN) synthesized on metal substrates. Here, we describe a comparative study of Mn intercalation into the interfaces of graphene/Rh(111) and h-BN/Rh(111), by using atomically-resolved scanning tunneling microscopy (STM) and density functional theory (DFT) calculations. The intercalation was performed by annealing as-deposited Mn clusters, and the starting temperature of Mn intercalation into h-BN/Rh(111) was found to be ~80 ℃ higher than that for graphene/Rh(111). Moreover, the intercalated islands of h-BN/Mn/Rh(111) usually possess more irregular shapes than those of graphene/Mn/Rh(111), as illustrated by temperature-dependent STM observations. All these experimental facts suggest a stronger interaction of Mn with h-BN/Rh(111) than that with graphene/Rh(111).

Electronic Supplementary Material

Download File(s)
nr-6-12-887_ESM.pdf (1.6 MB)

References

1

Geim, A. K.; Novoselov, K. S. The rise of graphene. Nat. Mater. 2007, 6, 183–191.

2

Castro Neto, A. H.; Guinea, F.; Peres, N. M. R.; Novoselov, K. S.; Geim, A. K. The electronic properties of graphene. Rev. Mod. Phys. 2009, 81, 109–162.

3

Liu, L.; Feng, Y. P.; Shen, Z. X. Structural and electronic properties of h-BN. Phys. Rev. B. 2003, 68, 104102.

4

Watanabe, K.; Taniguchi, T.; Kanda, H. Direct-bandgap properties and evidence for ultraviolet lasing of hexagonal boron nitride single crystal. Nat. Mater. 2004, 3, 404–409.

5

Dean, C. R.; Young, A. F.; Meric, I.; Lee, C.; Wang, L.; Sorgenfrei, S.; Watanabe, K.; Taniguchi, T.; Kim, P.; Shepard, K. L.; et al. Boron nitride substrates for high-quality graphene electronics. Nat. Nanotechnol. 2010, 5, 722–726.

6

Mayorov, A. S.; Gorbachev, R. V.; Morozov, S. V.; Britnell, L.; Jalil, R.; Ponomarenko, L. A.; Blake, P.; Novoselov, K. S.; Watanabe, K.; Taniguchi, T.; et al. Micrometer-scale ballistic transport in encapsulated graphene at room temperature. Nano Lett. 2011, 11, 2396–2399.

7

Song, L.; Ci, L. J.; Lu, H.; Sorokin, P. B.; Jin, C. H.; Ni, J.; Kvashnin, A. G.; Kvashnin, D. G.; Lou, J.; Yakobson, B. I.; et al. Large scale growth and characterization of atomic hexagonal boron nitride layers. Nano Lett. 2010, 10, 3209–3215.

8

Shi, Y. M.; Hamsen, C.; Jia, X. T.; Kim, K. K.; Reina, A.; Hofmann, M.; Hsu, A. L.; Zhang, K.; Li, H. N.; Juang, Z. Y.; et al. Synthesis of few-layer hexagonal boron nitride thin film by chemical vapor deposition. Nano Lett. 2010, 10, 4134–4139.

9

Li, X. S.; Cai, W. W.; Colombo, L.; Ruoff, R. S. Evolution of graphene growth on Ni and Cu by carbon isotope labeling. Nano Lett. 2009, 9, 4268–4272.

10

Li, X. S.; Cai, W. W.; An, J.; Kim, S.; Nah, J.; Yang, D. X.; Piner, R.; Velamakanni, A.; Jung, I.; Tutuc, E.; et al. Large-area synthesis of high-quality and uniform graphene films on copper foils. Science 2009, 324, 1312–1314.

11

Liu, N.; Fu, L.; Dai, B. Y.; Yan, K.; Liu, X.; Zhao, R. Q.; Zhang, Y. F.; Liu, Z. F. Universal segregation growth approach to wafer-size graphene from non-noble metals. Nano Lett. 2011, 11, 297–303.

12

Gao, L. B.; Ren, W. C.; Xu, H. L.; Jin, L.; Wang, Z. X.; Ma, T.; Ma, L. P.; Zhang, Z. Y.; Fu, Q.; Peng, L. -M.; et al. Repeated growth and bubbling transfer of graphene with millimetre-size single-crystal grains using platinum. Nat. Commun. 2012, 3, 1702.

13

Zhang, Y. F.; Gao, T.; Gao, Y. B.; Xie, S. B.; Ji, Q. Q.; Yan, K.; Peng, H. L.; Liu, Z. F. Defect-like structures of graphene on copper foils for strain relief investigated by high-resolution scanning tunneling microscopy. ACS Nano 2011, 5, 4014–4022.

14

Reina, A.; Jia, X. T.; Ho, J.; Nezich, D.; Son, H.; Bulovic, V.; Dresselhaus, M. S.; Kong, J. Large area, few-layer graphene films on arbitrary substrates by chemical vapor deposition. Nano Lett. 2009, 9, 30–35.

15

Merino, P.; Švec, M.; Pinardi, A. L.; Otero, G.; Martín-Gago, J. A. Strain-driven moiré superstructures of epitaxial graphene on transition metal surfaces. ACS Nano 2011, 5, 5627–5634.

16

N'Diaye, A. T.; Bleikamp, S.; Feibelman, P. J.; Michely, T. Two-dimensional Ir cluster lattice on a graphene moiré on Ir(111). Phys. Rev. Lett. 2006, 97, 215501.

17

Coraux, J.; N'Diaye, A. T.; Busse, C.; Michely, T. Structural coherency of graphene on Ir(111). Nano Lett. 2008, 8, 565–570.

18

Hattab, H.; N'Diaye, A. T.; Wall, D.; Klein, C.; Jnawali, G.; Coraux, J.; Busse, C.; Gastel, R. V.; Poelsema, B.; Michely, T.; et al. Interplay of wrinkles, strain, and lattice parameter in graphene on iridium. Nano Lett. 2012, 12, 678–682.

19

Sutter, P. W.; Flege, J. -I.; Sutter, E. A. Epitaxial graphene on ruthenium. Nat. Mater. 2008, 7, 406–411.

20

Pan, Y.; Zhang, H. G.; Shi, D. X.; Sun, J. T.; Du, S. X.; Liu, F.; Gao, H. -J. Highly ordered, millimeter-scale, continuous, single-crystalline graphene monolayer formed on Ru (0001). Adv. Mater. 2009, 21, 2777–2780.

21

Kwon, S. -Y.; Ciobanu, C. V.; Petrova, V.; Shenoy, V. B.; Barenño, J.; Gambin, V.; Petrov, I.; Kodambaka, S. Growth of semiconducting graphene on palladium. Nano Lett. 2009, 9, 3985–3990.

22

Moritz, W.; Wang, B.; Bocquet, M. -L.; Brugger, T.; Greber, T.; Wintterlin, J.; Günther, S. Structure determination of the coincidence phase of graphene on Ru(0001). Phys. Rev. Lett. 2010, 104, 136102.

23

Wang, B.; Caffio, M.; Bromley, C.; Früchtl, H.; Schaub, R.; Coupling epitaxy, chemical bonding, and work function at the local scale in transition metal-supported graphene. ACS Nano 2010, 4, 5773–5782.

24

Borca, B.; Barja, S.; Garnica, M.; Sánchez-Portal, D.; Silkin, V. M.; Chulkov, E. V.; Hermanns, C. F.; Hinarejos, J. J.; Vázquez de Parga, A. L.; Arnau, A.; et al. . Potential energy landscape for hot electrons in periodically nanostructured graphene. Phys. Rev. Lett. 2010, 105, 036804.

25

Corso, M.; Auwärter, W.; Muntwiler, M.; Tamai, A.; Greber, T.; Osterwalder, J. Boron nitride nanomesh. Science 2004, 303, 217–220.

26

Laskowski, R.; Blaha, P.; Gallauner, T.; Schwarz, K. Single-layer model of the hexagonal boron nitride nanomesh on the Rh(111) surface. Phys. Rev. Lett. 2007, 98, 106802.

27

Berner, S.; Corso, M.; Widmer, R.; Groening, O.; Laskowski, R.; Blaha, P.; Schwarz, K.; Goriachko, A.; Over, H.; Gsell, S.; et al. Boron nitride nanomesh: Functionality from a corrugated monolayer. Angew. Chem. Int. Ed. 2007, 46, 5115–5119.

28

Vinogradov, N. A.; Zakharov, A. A.; Ng, M. L.; Mikkelsen, A.; Lundgren, E.; Mårtensson, N.; Preobrajenski, A. B. One-dimensional corrugation of the h-BN monolayer on Fe(110). Langmuir 2012, 28, 1775–1781.

29

Dedkov, Y. S.; Fonin, M.; Rüdiger, U.; Laubschat, C. Rashba effect in the graphene/Ni(111) system. Phys. Rev. Lett. 2008, 100, 107602.

30

Varykhalov, A.; Sánchez-Barriga, J.; Shikin, A. M.; Biswas, C.; Vescovo, E.; Rybkin, A.; Marchenko, D.; Rader, O. Electronic and magnetic properties of quasifreestanding graphene on Ni. Phys. Rev. Lett. 2008, 101, 157601.

31

Zhang, H.; Fu, Q.; Cui, Y.; Tan, D. L.; Bao, X. H. Growth mechanism of graphene on Ru(0001) and O2 adsorption on the graphene/Ru(0001) surface. J. Phys. Chem. C 2009, 113, 8296–8301.

32

Sutter, P.; Sadowski, J. T.; Sutter, E. A. Chemistry under cover: Tuning metal–graphene interaction by reactive intercalation. J. Am. Chem. Soc. 2010, 132, 8175–8179.

33

Mu, R. T.; Fu, Q.; Jin, L.; Yu, L.; Fang, G. Z.; Tan, D. L.; Bao, X. H. Visualizing chemical reactions confined under graphene. Angew. Chem. Int. Ed. 2012, 51, 4856–4859.

34

Mao, J. H.; Huang, L.; Pan, Y.; Gao, M.; He, J. F.; Zhou, H. T.; Guo, H. M.; Tian, Y.; Zou, Q.; Zhang, L. Z.; et al. Silicon layer intercalation of centimeter-scale, epitaxially-grown monolayer graphene on Ru(0001). Appl. Phys. Lett. 2012, 100, 093101

35

Dedkov, Y. S.; Fonin, M.; Rüdiger, U.; Laubschat, C. Graphene-protected iron layer on Ni(111). Appl. Phys. Lett. 2008, 93, 022509.

36

Sicot, M.; Leicht, P.; Zusan, A.; Bouvron, S.; Zander, O.; Weser, M.; Dedkov, Y. S.; Horn, K.; Fonin, M. Size-selected epitaxial nanoislands underneath graphene moiré on Rh(111). ACS Nano 2012, 6, 151–158.

37

Huang, L.; Pan, Y.; Pan, L. D.; Gao, M.; Xu, W. Y.; Que, Y. D.; Zhou, H. T.; Wang, Y. L.; Du, S. X.; Gao, H. -J. Intercalation of metal islands and films at the interface of epitaxially grown graphene and Ru(0001) surfaces. Appl. Phys. Lett. 2011, 99, 163107.

38

Cui, Y.; Gao, J. F.; Jin, L.; Zhao, J. J.; Tan, D. L.; Fu, Q.; Bao, X. H. An exchange intercalation mechanism for the formation of a two-dimensional Si structure underneath graphene. Nano Res. 2012, 5, 352–360.

39

Mao, J. H.; Huang, L.; Pan, Y.; Gao, M.; He, J. F.; Zhou, H. T.; Guo, H. M.; Tian, Y.; Zou, Q.; Zhang, L. Z.; et al. Silicon layer intercalation of centimeter-scale, epitaxially grown monolayer graphene on Ru(0001). Appl. Phys. Lett. 2012, 100, 093101.

40

Meng, L.; Wu, R. T.; Zhou, H. T.; Li, G.; Zhang, Y.; Li, L. F.; Wang, Y. L.; Gao, H. -J. Silicon intercalation at the interface of graphene and Ir(111). Appl. Phys. Lett. 2012, 100, 083101.

41

Lizzit, S.; Larciprete, R.; Lacovig, P.; Dalmiglio, M.; Orlando, F.; Baraldi, A.; Gammelgaard, L.; Barreto, L.; Bianchi, M.; Perkins, E.; et al. Transfer-free electrical insulation of epitaxial graphene from its metal substrate. Nano Lett. 2012, 12, 4503–4507.

42

Preobrajenski, A. B.; Ng, M. L.; Vinogradov, N. A.; Vinogradov, A. S.; Lundgren, E.; Mikkelsen, A.; Mårtensson, N. Impact of oxygen coadsorption on intercalation of cobalt under the h-BN nanomesh. Nano Lett. 2009, 9, 2780–2787.

43

Goriachko, A.; He, Y. B.; Over, H. Complex growth of NanoAu on BN nanomeshes supported by Ru(0001). J. Phys. Chem. C 2008, 112, 8147–8152.

44

Jin, L.; Fu, Q.; Mu, R. T.; Tan, D. L.; Bao, X. H. Pb intercalation underneath a graphene layer on Ru(0001) and its effect on graphene oxidation. Phys. Chem. Chem. Phys. 2011, 13, 16655–16660.

45

Lahiri, J.; Batzill, M. Graphene destruction by metal-carbide formation: An approach for patterning of metal-supported graphene. Appl. Phys. Lett. 2010, 97, 023102.

46

Gao, T.; Gao, Y. B.; Chang, C. Z.; Chen, Y. B.; Liu, M. X.; Xie, S. B.; He, K.; Ma, X. C.; Zhang, Y. F.; Liu, Z. F. Atomic-scale morphology and electronic structure of manganese atomic layers underneath epitaxial graphene on SiC(0001). ACS Nano 2012, 6, 6562–6568.

47

Boukhvalov, D. W.; Katsnelson, M. I. Destruction of graphene by metal adatoms. Appl. Phys. Lett. 2009, 95, 023109.

48

Reuter, K.; Scheffler, M. Composition, structure, and stability of RuO2(110) as a function of oxygen pressure. Phys. Rev. B 2001, 65, 035406.

49

Dion, M.; Rydberg, H.; Schröder, E.; Langreth, D. C.; Lundqvist, B. I. Van der Waals density functional for general geometries. Phys. Rev. Lett. 2004, 92, 246401.

50

Togo, A.; Oba, F.; Tanaka, I. First-principles calculations of the ferroelastic transition between rutile-type and CaCl2-type SiO2 at high pressures. Phys. Rev. B 2008, 78, 134106.

Nano Research
Pages 887-896
Cite this article:
Zhang Y, Zhang Y, Ma D, et al. Mn atomic layers under inert covers of graphene and hexagonal boron nitride prepared on Rh(111). Nano Research, 2013, 6(12): 887-896. https://doi.org/10.1007/s12274-013-0365-z

430

Views

22

Crossref

N/A

Web of Science

21

Scopus

2

CSCD

Altmetrics

Received: 20 June 2013
Revised: 23 August 2013
Accepted: 25 August 2013
Published: 12 September 2013
© Tsinghua University Press and Springer-Verlag Berlin Heidelberg 2013
Return