AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Writing with atoms: Oxygen adatoms on the MoO2/Mo(110) surface

Sergey A. Krasnikov1( )Olaf Lübben1Barry E. Murphy1Sergey I. Bozhko1,2Alexander N. Chaika1,2Natalia N. Sergeeva3Brendan Bulfin1Igor V. Shvets1
Centre for Research on Adaptive Nanostructures and NanodevicesSchool of Physics, Trinity College Dublin, Dublin 2Ireland
Institute of Solid State PhysicsRussian Academy of SciencesChernogolovkaMoscow District142432Russia
School of ChemistryUniversity of Leeds, Leeds, LS2 9JTUK
Show Author Information

Graphical Abstract

Abstract

Writing at the nanoscale using the desorption of oxygen adatoms from the oxygen-rich MoO2+x/Mo(110) surface is demonstrated by scanning tunnelling microscopy (STM). High-temperature oxidation of the Mo(110) surface results in a strained, bulk-like MoO2(010) ultra-thin film with an O–Mo–O trilayer structure. Due to the lattice mismatch between the Mo(110) and the MoO2(010), the latter consists of well-ordered molybdenum oxide nanorows separated by 2.5 nm. The MoO2(010)/Mo(110) structure is confirmed by STM data and density functional theory calculations. Further oxidation results in the oxygen-rich MoO2+x/Mo(110) surface, which exhibits perfectly aligned double rows of oxygen adatoms, imaged by STM as bright protrusions. These adatoms can be removed from the surface by scanning (or pulsing) at positive sample biases greater than 1.5 V. Tip movement along the surface can be used for controlled lithography (or writing) at the nanoscale, with a minimum feature size of just 3 nm. By moving the STM tip in a predetermined fashion, information can be written and read by applying specific biases between the surface and the tip.

References

1

Binnig, G.; Rohrer, H.; Gerber, C.; Weibel, E. Surface studies by scanning tunnelling microscopy. Phys. Rev. Lett. 1982, 49, 57–61.

2

Ringger, M.; Hidber, H. R.; Schlögl, R.; Oelhafen, P.; Güntherodt, H. J. Nanometer lithography with the scanning tunnelling microscope. Appl. Phys. Lett. 1985, 46, 832.

3

Staufer, U.; Wiesendanger, R.; Eng, L.; Rosenthaler, L.; Hidber, H. R.; Güntherodt, H. J.; Garcia, N. Nanometer scale structure fabrication with the scanning tunneling microscope. Appl. Phys. Lett. 1987, 51, 244.

4

Eigler, D. M.; Schweizer, E. K. Positioning single atoms with a scanning tunnelling microscope. Nature 1990, 344, 524–526.

5

Stroscio, J. A.; Eigler, D. M. Atomic and molecular manipulation with the scanning tunneling microscope. Science 1991, 254, 1319–1326.

6

Zeppenfeld, P.; Lutz, C. P.; Eigler, D. M. Manipulating atoms and molecules with a scanning tunneling microscope. Ultramicroscopy 1992, 42, 128–133.

7

Walsh, M. A.; Hersam, M. C. Atomic-scale templates patterned by ultrahigh vacuum scanning tunnelling microscopy on silicon. Annu. Rev. Phys. Chem. 2009, 60, 193–216.

8

Crommie, M. F.; Lutz, C. P.; Eigler, D. M. Confinement of electrons to quantum corrals on a metal surface. Science 1993, 262, 218–220.

9

Pires, D.; Hedrick, J. L.; De Silva, A.; Frommer, J.; Gotsmann, B.; Wolf, H.; Despont, M.; Duerig, U.; Knoll, A. W. Nanoscale three-dimensional patterning of molecular resists by scanning probes. Science 2010, 328, 732–735.

10

Wei, Z. Q.; Wang, D. B.; Kim, S.; Kim, S. Y.; Hu, Y.; Yakes, M. K.; Laracuente, A. R.; Dai, Z. T.; Marder, S. R.; Berger, C. et al. Nanoscale tunable reduction of graphene oxide for graphene electronics. Science 2010, 328, 1373–1376.

11

Sugimura, H.; Kitamura, N.; Masuhara, H. Modification of n-Si(100) surface by scanning tunnelling microscope tip-induced anodization under nitrogen atmosphere. Jpn. J. Appl. Phys. 1994, 33, L143–L145.

12

Mühl, T.; Brückl, H.; Weise, G.; Reiss, G. Nanometer-scale lithography in thin carbon layers using electric field assisted scanning force microscopy. J. Appl. Phys. 1997, 82, 5255.

13

Kolb, D. M.; Ullmann, R.; Will, T. Nanofabrication of small copper clusters on gold(111) electrodes by a scanning tunnelling microscope. Science 1997, 275, 1097–1099.

14

Piner, R. D.; Zhu, J.; Xu, F.; Hong, S.; Mirkin, C. A. "Dip-Pen" nanolithography. Science 1999, 283, 661–663.

15

Sugimura, H.; Nakagiri, N. Chemical approach to nanofabrication: Modifications of silicon surfaces patterned by scanning probe anodization. Jpn. J. Appl. Phys. 1995, 34, 3406–3411.

16

Sakurai, M.; Thirstrup, C.; Aono, M. Nanoscale growth of silver on prepatterned hydrogen-terminated Si(001) surfaces. Phys. Rev. B 2000, 62, 16167–16174.

17

Wei, Y. M.; Zhou, X. S.; Wang, J. G.; Tang, J.; Mao, B. W.; Kolb, D. M. The creation of nanostructures on an Au(111) electrode by tip-induced iron deposition from an ionic liquid. Small 2008, 4, 1355–1358.

18

Hallam, T.; Reusch, T. C. G.; Oberbeck, L.; Curson, N. J.; Simmons, M. Y. Scanning tunneling microscope based fabrication of nano- and atomic scale dopant devices in silicon: The crucial step of hydrogen removal. J. Appl. Phys. 2007, 101, 034305.

19

Cen, C.; Thiel, S.; Mannhart, J.; Levy, J. Oxide nanoelectronics on demand. Science 2009, 323, 1026–1030.

20

Hartwich, J.; Dreeskornfeld, L.; Heisig, V.; Rahn, S.; Wehmeyer, O.; Kleineberg, U.; Heinzmann, U. STM writing of artificial nanostructures in ultrathin PMMA and SAM resists and subsequent pattern transfer in a Mo/Si multilayer by reactive ion etching. Appl. Phys. A 1998, 66, S685–S688.

21

Krasnikov, S. A.; Murphy, S.; Berdunov, N.; McCoy, A. P.; Radican, K.; Shvets, I. V. Self-limited growth of triangular PtO2 nanoclusters on the Pt(111) surface. Nanotechnology 2010, 21, 335301.

22

Krasnikov, S. A.; Bozhko, S. I.; Radican, K.; Lübben, O.; Murphy, B. E.; Vadapoo, S. R.; Wu, H. C.; Abid, M.; Semenov, V. N.; Shvets, I. V. Self-assembly and ordering of C60 on the WO2/W(110) surface. Nano Res. 2011, 4, 194–203.

23

Laursen, S.; Linic, S. Oxidation catalysis by oxide-supported Au nanostructures: The role of supports and the effect of external conditions. Phys. Rev. Lett. 2006, 97, 026101.

24

Santra, A. K.; Goodman, D. W. Oxide-supported metal clusters: Models for heterogeneous catalysts. J. Phys. Condens. Matter 2003, 15, R31–R62.

25

Chaika, A. N.; Nazin, S. S.; Semenov, V. N.; Bozhko. S. I.; Lübben, O.; Krasnikov, S. A.; Radican, K.; Shvets, I. V. Selecting the tip electron orbital for scanning tunneling microscopy imaging with sub-Ångström lateral resolution. EPL 2010, 92, 46003.

26

Chaika, A. N.; Nazin, S. S.; Semenov, V. N.; Orlova, N. N.; Bozhko, S. I.; Lübben, O.; Krasnikov, S. A.; Radican, K.; Shvets, I. V. High resolution STM imaging with oriented single crystalline tips. Appl. Surf. Sci. 2013, 267, 219–223.

27

Kresse, G.; Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 1996, 54, 11169–11186.

28

Ceperley, D. M.; Alder, B. J. Ground state of the electron gas by a stochastic method. Phys. Rev. Lett. 1980, 45, 566–569.

29

Radican, K.; Berdunov, N.; Manai, G.; Shvets, I. V. Epitaxial molybdenum oxide grown on Mo(110): LEED, STM, and density functional theory calculations. Phys. Rev. B 2007, 75, 155434.

30

Radican, K.; Berdunov, N.; Shvets, I. V. Studies of the periodic faceting of epitaxial molybdenum oxide grown on Mo(110). Phys. Rev. B 2008, 77, 085417.

31

Lübben, O.; Krasnikov, S. A.; Preobrajenski, A. B.; Murphy, B. E.; Bozhko, S. I.; Arrora, S. K.; Shvets, I. V. Self-assembly of Fe nanocluster arrays on templated surfaces. J. Appl. Phys. 2012, 111, 07B515.

32

Shen, T. C.; Wang, C.; Abeln, G. C.; Tucker, J. R.; Lyding, J. W.; Avouris, Ph.; Walkup, R. E. Atomic-scale desorption through electronic and vibrational excitation mechanisms. Science 1995, 268, 1590–1592.

33

Stipe, B. C.; Rezaei, M. A.; Ho, W.; Gao, S.; Persson, M.; Lundqvist, B. I. Single-molecule dissociation by tunneling electrons. Phys. Rev. Lett. 1997, 78, 4410–4413.

34

Stroscio, J. A.; Celotta, R. J. Controlling the dynamics of a single atom in lateral atom manipulation. Science 2004, 306, 242–247.

35

Bozhko, S. I.; Krasnikov, S. A.; Lübben, O.; Murphy, B. E.; Radican, K.; Semenov, V. N.; Wu, H. C.; Levchenko, E. A.; Chaika, A. N.; Sergeeva, N. N. et al. Correlation between charge-transfer and rotation of C60 on WO2/W(110). Nanoscale 2013, 5, 3380–3386.

36

Repp, J.; Meyer, G.; Olsson, F. E.; Persson, M. Controlling the charge state of individual gold adatoms. Science 2004, 305, 493–495.

37

Gadzuk, J. W. Resonance-assisted, hot-electron-induced desorption. Surf. Sci. 1995, 342, 345–358.

38

Eigler, D. M.; Lutz, C. P.; Rudge, W. E. An atomic switch realized with the scanning tunnelling microscope. Nature 1991, 352, 600–603.

39

Horcas, I.; Fernández, R.; Gómez-Rodriguez, J. M.; Colchero, J.; Gómez-Herrero, J.; Baro, A. M. WSXM: A software for scanning probe microscopy and a tool for nanotechnology. Rev. Sci. Instrum. 2007, 78, 013705.

Nano Research
Pages 929-937
Cite this article:
Krasnikov SA, Lübben O, Murphy BE, et al. Writing with atoms: Oxygen adatoms on the MoO2/Mo(110) surface. Nano Research, 2013, 6(12): 929-937. https://doi.org/10.1007/s12274-013-0370-2

635

Views

10

Crossref

N/A

Web of Science

10

Scopus

2

CSCD

Altmetrics

Received: 21 June 2013
Revised: 11 September 2013
Accepted: 13 September 2013
Published: 11 October 2013
© Tsinghua University Press and Springer-Verlag Berlin Heidelberg 2013
Return