AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Spin-resolved self-doping tunes the intrinsic half-metallicity of AlN nanoribbons

Alejandro Lopez-Bezanilla( )P. Ganesh( )Paul R. C. KentBobby G. Sumpter
Oak Ridge National Laboratory One Bethel Valley RoadOak RidgeTennessee 37831-6493 USA

Present address: Argonne National Laboratory, 9700 South Cass Avenue, Lemont, IL 60439, USA

Show Author Information

Graphical Abstract

Abstract

We present a first-principles theoretical study of electric field-and strain-controlled intrinsic half-metallic properties of zigzagged aluminium nitride (AlN) nanoribbons. We show that the half-metallic property of AlN ribbons can undergo a transition into fully-metallic or semiconducting behavior with application of an electric field or uniaxial strain. An external transverse electric field induces a full charge screening that renders the material semiconducting. In contrast, as uniaxial strain varies from compressive to tensile, a spin-resolved selective self-doping increases the half-metallic character of the ribbons. The relevant strain-induced changes in electronic properties arise from band structure modifications at the Fermi level as a consequence of a spin-polarized charge transfer between p-orbitals of the N and Al edge atoms in a spin-resolved self-doping process. This band structure tunability indicates the possibility of designing magnetic nanoribbons with tunable electronic structure by deriving edge states from elements with sufficiently different localization properties. Finite temperature molecular dynamics reveal a thermally stable half-metallic nanoribbon up to room temperature.

Electronic Supplementary Material

Download File(s)
nr-7-1-63_ESM.pdf (567 KB)

References

1

Wolf, S. A.; Awschalom, D. D.; Buhrman, R. A.; Daughton, J. M.; von Molnár, S.; Roukes, M. L.; Chtchelkanova, A. Y.; Treger, D. M. Spintronics: A spin-based electronics vision for the future. Science 2001, 294, 1488–1495.

2

Heusler, O. Kristallstruktur und ferromagnetismus der mangan-aluminium-kupferlegierungen. Ann. Phys. 1934, 411, 155–201.

3

de Groot, R. A.; Mueller, F. M.; vanEngen, P. G.; Buschow, K. H. J. New class of materials: Half-metallic ferromagnets. Phys. Rev. Lett. 1983, 50, 2024–2027.

4

Dolui, K.; Pemmaraju, C. D.; Sanvito, S. Electric field effects on armchair MoS2 nanoribbons. ACS Nano 2012, 6, 4823–4834.

5

Du, A. J.; Zhu, Z. H.; Chen, Y.; Lu, G. Q.; Smith, S. C. First principle studies of zigzag AlN nanoribbon. Chem. Phys. Lett. 2009, 469, 183–185.

6

Son, Y. -W.; Cohen, M. L.; Louie, S. G. Half-metallic graphene nanoribbons. Nature 2006, 444, 347–349.

7

Hod, O.; Barone, V.; Peralta, J. E.; Scuseria, G. E. Enhanced half-metallicity in edge-oxidized zigzag graphene nanoribbons. Nano Lett. 2007, 7, 2295–2299.

8

Qi, J. S.; Qian, X. F.; Qi, L.; Feng, J.; Shi, D. N.; Li, J. Strain-engineering of band gaps in piezoelectric boron nitride nanoribbons. Nano Lett. 2012, 12, 1224–1228.

9

Piazza, G.; Felmetsger, V.; Muralt, P.; Olsson III, R. H.; Ruby, R. Piezoelectric aluminum nitride thin films for microelectromechanical systems. MRS Bull. 2012, 37, 1051–1061.

10

O'Leary, S. K.; Foutz, B. E.; Shur, M. S.; Eastman, L. F. Steady-state and transient electron transport within the III–V nitride semiconductors, GaN, AlN, and InN: A review. J. Mater. Sci. : Mater. El. 2006, 17, 87–126.

11

Balasubramanian, C.; Bellucci, S.; Castrucci, P.; De Crescenzi, M.; Bhoraskar, S. V. Scanning tunneling microscopy observation of coiled aluminum nitride nanotubes. Chem. Phys. Lett. 2004, 383, 188–191.

12

Zhukovskii, Y. F.; Popov, A. I.; Balasubramanian, C.; Bellucci, S. Structural and electronic properties of single-walled AlN nanotubes of different chiralities and sizes. J. Phys. : Condens. Matter 2006, 18, 2045.

13

Xie, T.; Lin, Y.; Wu, G. S.; Yuan, X. Y.; Jiang, Z.; Ye, C. H.; Meng, G. W.; Zhang, L. D. AlN serrated nanoribbons synthesized by chloride assisted vapor-solid route. Inorg. Chem. Commun. 2004, 7, 545–547.

14

Moon, E. J.; Rondinelli, J. M.; Prasai, N.; Gray, B. A.; Kareev, M.; Chakhalian, J.; Cohn, J. L. Strain-controlled band engineering and self-doping in ultrathin LaNiO3 films. Phys. Rev. B 2012, 85, 121106–121109.

15

Ordejón, P.; Artacho, E.; Soler, J. M. Self-consistent order-N densisty-functional calculations for very large systems. Phys. Rev. B 1996, 53, 10441–10444.

16

Soler, J. M.; Artacho, E.; Gale, J. D.; García, A.; Junquera, J.; Ordejón, P.; Sánchez-Portal, D. The SIESTA method for ab initio order-N materials simulation. J. Phys. : Condens. Matter 2002, 14, 2745–2779.

17

Clement, M.; Vergara, L.; Sangrador, J.; Iborra, E.; Sanz-Hervás, A. SAW characteristics of AlN films sputtered on silicon substrates. Ultrasonics 2004, 42, 403–407.

18
We used a double-polarized basis set within the spin-dependent general gradient approximation (PBE). AlN nanoribbons were modeled within a supercell with at least 10 Å of vacuum to avoid interactions between neighboring cells. Atomic positions were relaxed with a force tolerance of 5 meV/Å. The Brillouin zone integration used a Monkhorst–Pack sampling of 1 × 1 × 32 k-points for two-row ribbons. The radial extension of the localized orbitals used a kinetic energy cutoff of 70 meV. The numerical integrals are computed on a real space grid with an equivalent cutoff of 500 Ry.
19

Kresse G.; Furthmüller, J. Efficient iterative scheme for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 1996, 54, 11169–11186.

20

Kresse G.; Joubert, D. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B 1999, 59, 1758–1775.

21
A plane wave cut-off. of 400 eV and Brillouin zone sampling identical to the SIESTA calculations was used. Electronic states were occupied using either the Methfesel–Paxton method or Gaussian smearing of up to 0.25 eV. Molecular dynamics simulations were performed in the NVT ensemble for a 4-unit super-cell using only the Γ-point, starting from the ground-state spin-structure for 0% and 8% strain at T = 150 K and T = 300 K. 2.5 ps long runs were performed after an initial equilibration time of 0.8 ps with a 1 fs time-step.
22

Liu, Q. Q.; Yu, X. H.; Wang, X. C.; Deng, Z.; Lv, Y. X.; Zhu, J. L.; Zhang, S. J.; Liu, H. Z.; Yang, W. G.; Wang, L.; et al. Pressure-induced isostructural phase transition and correlation of FeAs coordination with the superconducting properties of 111-type Na1–xFeAs. J. Am. Chem. Soc. 2011, 133, 7892–7896.

23

He, K. L.; Poole, C.; Mak, K. F.; Shan, J. Experimental demonstration of continuous electronic structure tuning via strain in atomically thin MoS2. Nano Lett. 2013, 13, 2931–2936.

24

Wang, G.; Zhu, C. R.; Liu, B. L.; Marie, X.; Feng, Q. X.; Wu, X. X.; Fan, H.; Tan, P. H.; Amand, T.; Urbaszek, B. Strain tuning of optical emission energy and polarization in monolayer and bilayer MoS2. Phys. Rev. B 2013, 88, 121301–121305.

25

Conley, H. J.; Wang, B.; Ziegler, J. I.; Haglund R. F.; Pantelides, S. T.; Bolotin, K. I. Bandgap engineering of strained monolayer and bilayer MoS2. Nano Lett. 2013, 13, 3626–3630.

Nano Research
Pages 63-70
Cite this article:
Lopez-Bezanilla A, Ganesh P, Kent PRC, et al. Spin-resolved self-doping tunes the intrinsic half-metallicity of AlN nanoribbons. Nano Research, 2014, 7(1): 63-70. https://doi.org/10.1007/s12274-013-0371-1

656

Views

13

Crossref

N/A

Web of Science

13

Scopus

1

CSCD

Altmetrics

Received: 09 May 2013
Revised: 18 September 2013
Accepted: 19 September 2013
Published: 16 October 2013
© Tsinghua University Press and Springer-Verlag Berlin Heidelberg 2013
Return