Discover the SciOpen Platform and Achieve Your Research Goals with Ease.
Search articles, authors, keywords, DOl and etc.
A vertically aligned anatase TiO2 (A-TiO2) nanotube array has been fabricated by coating a ZnO nanorod (NR) template with a TiO2 precursor solution. After coating, the ZnO NR cores were selectively etched in an acidic environment to form TiO2 nanotubes (NTs). More specifically, after growing the ZnO NRs via a hydrothermal method, one drop of the TiO2 precursor solution was cast to coat the ZnO NRs, the tops of which were previously covered with chemical capping materials by electrostatic interaction, and then the sample was sintered. Finally, the sample was immersed in an acidic solution resulting in selective etching of the ZnO NR cores. Thus, only TiO2 NTs remained on the substrate. The capping material is effectively used to create a perfect, hexagonal open-ended TiO2 NT array, which interestingly extends onset absorption towards the visible region.
Ding, Y. H.; Zhang, P.; Long, Z. L.; Jiang, Y.; Xu, F.; Lei, J. G. Fabrication and photocatalytic property of TiO2 nanofibers. J. Sol-Gel. Sci. Technol. 2008, 46, 176–179.
Pehkonen, S. O.; Siefert, R.; Erel, Y.; Webb, S.; Hoffman, M. R. Photoreduction of iron oxyhydroxides in the presence of important atmospheric oxygen compounds. Environ. Sci. Technol. 1993, 27, 2056–2062.
Carraway, E. R.; Hoffman, A. J.; Hoffman, M. R. Photocatalytic oxidation of organic acids on quantum-sized semiconductor colloids. Environ. Sci. Technol. 1994, 28, 786–793.
Miao, L.; Tanemura, S.; Toh, S.; Kaneko, K.; Tanemura, M. Fabrication, characterization and Raman study of anatase-TiO2 nanorods by a heating-sol–gel template process. J. Cryst. Growth 2004, 264, 246–252.
Chemseddine, A.; Moritz, T. Nanostructuring titania: Control over nanocrystal structure, size, shape, and organization. Eur. J. Inorg. Chem. 1999, 1999, 235–245.
Tang, H.; Prasad, K.; Sanjinés, R.; Lévy, F. TiO2 anatase thin films as gas sensor. Sensor. Actuat. B 1995, 26, 71–75.
Fujishima, A.; Honda, K. Eletrochemical photolysis of water at a semiconductor electrode. Nature 1972, 238, 37–38.
Albu, S. P.; Ghicov, A.; Macak, J. M.; Hahn, R.; Schmuki, P. Self-organized, free-standing TiO2 nanotube membrane for flow-through photocatalyttic applications. Nano Lett. 2007, 7, 1286–1289.
Chen, D. H.; Huang, F. Z.; Cheng, Y. -B.; Caruso, R. A. Mesoporous anatase TiO2 beads with high surface areas and controllable pore sizes: A superior candidate for high-performance dye-sensitized solar cells. Adv. Mater. 2009, 21, 2206–2210.
Gerhardt, L. C.; Jell, G. M. R.; Boccaccini, A. R. Titanium dioxide (TiO2) nanoparticles filled poly(D, L lactic acid) (PDLLA) matrix composites for bone tissue engineering. J. Mater Sci: Mater. Med. 2007, 18, 1287–1298.
Lakshmi, B. B.; Patrissi, C. J.; Martin, C. R. Sol–gel template synthesis of semiconductor oxide micro-and nanostructures. Chem. Mater. 1997, 9, 2544–2550.
Liu, S. M.; Gan, L. M.; Liu, L. H.; Zhang, W. D.; Zeng, H. C. Synthesis of single-crystalline TiO2 nanotubes. Chem. Mater. 2002, 14, 1391–1397.
Lai, Y. K.; Sun, L.; Chen, Y. C.; Zhuang, H. F.; Lin, C. J.; Chin, J. W. Effects of the structure of TiO2 nanotube array on Ti substrate on its photocatalytic activity. J. Electrochem. Soc. 2006, 153, D123–D127.
Zhang, M.; Bando, Y.; Wada, K. Sol–gel template preparation of TiO2 nanotubes and nanorods. J. Mater. Sci. Lett. 2001, 20, 167–170.
Mor, G. K.; Shankar, K.; Paulose, M.; Varghese, O. K.; Grimes, C. A. Use of highly-ordered TiO2 nanotube arrays in dye-sensitized solar cells. Nano Lett. 2006, 6, 215–218.
Lee, J. -H.; Leu, I. -C.; Hsu, M. -C.; Chung, Y. -W.; Hon, M. -H. Fabrication of aligned TiO2 one-dimensional nanostructured arrays ujsing a one-step templating solution approach. J. Phys. Chem. B 2005, 109, 13056–13059.
Qiu, J. J.; Yu, W. D.; Gao, X. D.; Li, X. M. Sol–gel assisted ZnO nanorod array template to synthesize TiO2 nanotube arrays. Nanotechnology 2006, 17, 4695.
Kim, K. S.; Jeong, H.; Jeong, M. S.; Jung, G. Y. Polymer-templated hydrothermal growth of vertically aligned single-crystal ZnO nanorods and morphological transformations using structural polarity. Adv. Funct. Mater. 2010, 20, 3055–3063.
Andeen, D.; Kim, J. H.; Lange, F. F.; Goh, G. K. L.; Tripathy, S. Lateral epitaxial overgrowth of ZnO in water at 90 ℃. Adv. Funct. Mater. 2006, 16, 799–804.
Park, J.; Bauer, S.; Mark, K. V. D.; Schmuki, P. Nanosize and vitality: TiO2 nanotube diameter directs cell fate. Nano Lett. 2007, 7, 1686–1691.
Law, M.; Greene, L. E.; Radenovic, A.; Kuykendall, T.; Liphardt, J.; Yang, P. D. ZnO–Al2O3 and ZnO–TiO2 core–shell nanowire dye-sensitized solar cells. J. Phys. Chem. B 2006, 110, 22652–22663.