Article Link
Collect
Submit Manuscript
Show Outline
Outline
Graphical Abstract
Abstract
Keywords
Electronic Supplementary Material
References
Show full outline
Hide outline
Research Article

Alumina-coated Ag nanocrystal monolayers as surface-enhanced Raman spectroscopy platforms for the direct spectroscopic detection of water splitting reaction intermediates

Xing Yi Ling1,,§Ruoxue Yan1,,§Sylvia Lo1Dat Tien Hoang1Chong Liu1Melissa A. Fardy1Sher Bahadar Khan2Abdullah M. Asiri2Salem M. Bawaked2Peidong Yang1,2()
Department of Chemistry University of CaliforniaBerkeley CA 94720-1460 USA
Center of Excellence for Advanced Materials Research (CEAMR) King Abdulaziz UniversityJeddah 21589P.O. Box 80203 Saudi Arabia

Present address: Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore

Present address: Department of Chemical and Environmental Engineering. University of California, Riverside, CA 92521, USA

§These authors contributed equally to this work.

Show Author Information

Graphical Abstract

View original image Download original image

Abstract

A novel Ag–alumina hybrid surface-enhanced Raman spectroscopy (SERS) platform has been designed for the spectroscopic detection of surface reactions in the steady state. Single crystalline and faceted silver (Ag) nanoparticles with strong light scattering were prepared in large quantity, which enables their reproducible self-assembly into large scale monolayers of Raman sensor arrays by the Langmuir–Blodgett technique. The close packed sensor film contains high density of sub-nm gaps between sharp edges of Ag nanoparticles, which created large local electromagnetic fields that serve as "hot spots" for SERS enhancement. The SERS substrate was then coated with a thin layer of alumina by atomic layer deposition to prevent charge transfer between Ag and the reaction system. The photocatalytic water splitting reaction on a monolayer of anatase TiO2 nanoplates decorated with Pt co-catalyst nanoparticles was employed as a model reaction system. Reaction intermediates of water photo-oxidation were observed at the TiO2/solution interface under UV irradiation. The surface-enhanced Raman vibrations corresponding to peroxo, hydroperoxo and hydroxo surface intermediate species were observed on the TiO2 surface, suggesting that the photo-oxidation of water on these anatase TiO2 nanosheets may be initiated by a nucleophilic attack mechanism.

Electronic Supplementary Material

Download File(s)
nr-7-1-132_ESM.pdf (674.5 KB)

References

1

Maeda, K.; Domen, K. Photocatalytic water splitting: Recent progress and future challenges. J. Phys. Chem. Lett. 2010, 1, 2655–2661.

2

Kudo, A.; Miseki, Y. Heterogeneous photocatalyst materials for water splitting. Chem. Soc. Rev. 2009, 38, 253–278.

3

Lewis, N. S.; Nocera, D. G. Powering the planet: Chemical challenges in solar energy utilization. Proc. Natl. Acad. Sci. USA 2006, 103, 15729–15735.

4

Maeda, K.; Xiong, A. K.; Yoshinaga, T.; Ikeda, T.; Sakamoto, N.; Hisatomi, T.; Takashima, M.; Lu, D. L.; Kanehara, M.; Setoyama, T., et al. Photocatalytic overall water splitting promoted by two different cocatalysts for hydrogen and oxygen evolution under visible light. Angew. Chem. Int. Ed. 2010, 122, 4190–4193.

5

Kuykendall, T.; Ulrich, P.; Aloni, S.; Yang, P. D. Complete composition tunability of InGaN nanowires using a combinatorial approach. Nat. Mater. 2007, 6, 951–956.

6

Sivasankar, N.; Weare, W. W.; Frei, H. Direct observation of a hydroperoxide surface intermediate upon visible light-driven water oxidation at an Ir oxide nanocluster catalyst by rapid-scan FT-IR spectroscopy. J. Am. Chem. Soc. 2011, 133, 12976–12979.

7

Mattioli, G.; Filippone, F.; Amore Bonapasta, A. Reaction intermediates in the photoreduction of oxygen molecules at the (101) TiO2 (anatase) surface. J. Am. Chem. Soc. 2006, 128, 13772–13780.

8

Imanishi, A.; Okamura, T.; Ohashi, N.; Nakamura, R.; Nakato, Y. Mechanism of water photooxidation reaction at atomically flat TiO2 (rutile) (110) and (100) surfaces: Dependence on solution pH. J. Am. Chem. Soc. 2007, 129, 11569–11578.

9

Nakamura, R.; Nakato, Y. Primary intermediates of oxygen photoevolution reaction on TiO2 (rutile) particles, revealed by in situ FTIR absorption and photoluminescence measurements. J. Am. Chem. Soc. 2004, 126, 1290–1298.

10

Tian, Z. Q.; Ren, B.; Chen, Y. X.; Zou, S. Z.; Mao, B. W. Probing electrode/electrolyte interfacial structure in the potential region of hydrogen evolution by Raman spectroscopy. J. Chem. Soc., Faraday Trans. 1996, 92, 3829–3838.

11

Niaura, G. Surface-enhanced Raman spectroscopic observation of two kinds of adsorbed OH ions at copper electrode. Electrochim. Acta 2000, 45, 3507–3519.

12

Heck, K. N.; Janesko, B. G.; Scuseria, G. E.; Halas, N. J.; Wong, M. S. Observing metal-catalyzed chemical reactions in situ using surface-enhanced Raman spectroscopy on Pd−Au nanoshells. J. Am. Chem. Soc. 2008, 130, 16592–16600.

13

Zou, S. Z.; Williams, C. T.; Chen, E. K. Y.; Weaver, M. J. Surface-enhanced Raman scattering as a ubiquitous vibrational probe of transition-metal interfaces: Benzene and related chemisorbates on Palladium and Rhodium in aqueous solution. J. Phys. Chem. B 1998, 102, 9039–9049.

14

Grass, M. E.; Zhang, Y. W.; Butcher, D. R.; Park, J. Y.; Li, Y. M.; Bluhm, H.; Bratlie, K. M.; Zhang, T. F.; Somorjai, G. A. A reactive oxide overlayer on Rhodium nanoparticles during CO oxidation and its size dependence studied by in situ ambient-pressure X-ray photoelectron spectroscopy. Angew. Chem. Int. Ed. 2008, 47, 8893–8896.

15

Dolamic, I.; Bürgi, T. Photoassisted decomposition of malonic acid on TiO2 studied by in situ attenuated total reflection infrared spectroscopy. J. Phys. Chem. B 2006, 110, 14898–14904.

16

Mojet, B. L.; Ebbesen, S. D.; Lefferts, L. Light at the interface: The potential of attenuated total reflection infrared spectroscopy for understanding heterogeneous catalysis in water. Chem. Soc. Rev. 2010, 39, 4643–4655.

17

Chen, T.; Feng, Z. C.; Wu, G. P.; Shi, J. Y.; Ma, G. J.; Ying, P. L.; Li, C. Mechanistic studies of photocatalytic reaction of methanol for hydrogen production on Pt/TiO2 by in situ fourier transform IR and time-resolved IR spectroscopy. J. Phys. Chem. C 2007, 111, 8005–8014.

18

Brownson, J. R. S.; Tejedor-Tejedor, M. I.; Anderson, M. A. FTIR spectroscopy of alcohol and formate interactions with mesoporous TiO2 surfaces. J. Phys. Chem. B 2006, 110, 12494–12499.

19

Cremer, P. S.; Su, X. C.; Shen, Y. R.; Somorjai, G. A. Hydrogenation and dehydrogenation of propylene on Pt(111) studied by sum frequency generation from UHV to atmospheric pressure. J. Phys. Chem. 1996, 100, 16302–16309.

20

Tinnemans, S. J.; Mesu, J. G.; Kervinen, K.; Visser, T.; Nijhuis, T. A.; Beale, A. M.; Keller, D. E.; van der Eerden, A. M. J.; Weckhuysen, B. M. Combining operando techniques in one spectroscopic-reaction cell: New opportunities for elucidating the active site and related reaction mechanism in catalysis. Catal. Today 2006, 113, 3–15.

21

Wang, Y. M.; Wöll, C. Chemical reactions on metal oxide surfaces investigated by vibrational spectroscopy. Surf. Sci. 2009, 603, 1589–1599.

22

Fan, F. T.; Feng, Z. C.; Li, C. UV Raman spectroscopic studies on active sites and synthesis mechanisms of transition metal-containing microporous and mesoporous materials. Acc. Chem. Res. 2010, 43, 378–387.

23

Weckhuysen, B. M. Snapshots of a working catalyst: Possibilities and limitations of in situ spectroscopy in the field of heterogeneous catalysis. Chem. Commun. 2002, 97–110.

24

Bañares, M. A. Operando methodology: Combination of in situ spectroscopy and simultaneous activity measurements under catalytic reaction conditions. Catal. Today 2005, 100, 71–77.

25

Foster, A. J.; Lobo, R. F. Identifying reaction intermediates and catalytic active sites through in situ characterization techniques. Chem. Soc. Rev. 2010, 39, 4783–4793.

26

Kneipp, K.; Wang, Y.; Kneipp, H.; Perelman, L. T.; Itzkan, I.; Dasari, R. R.; Feld, M. S. Single molecule detection using surface-enhanced Raman scattering (SERS). Phys. Rev. Lett. 1997, 78, 1667.

27

Nie, S. M.; Emory, S. R. Probing single molecules and single nanoparticles by surface-enhanced Raman scattering. Science 1997, 275, 1102–1106.

28

Xu, H. X.; Bjerneld, E. J.; Käll, M.; Börjesson, L. Spectroscopy of single hemoglobin molecules by surface enhanced Raman scattering. Phys. Rev. Lett. 1999, 83, 4357–4360.

29

Rycenga, M.; McLellan, J. M.; Xia, Y. N. Controlling the assembly of silver nanocubes through selective functionalization of their faces. Adv. Mater. 2008, 20, 2416–2420.

30

Stewart, M. E.; Anderton, C. R.; Thompson, L. B.; Maria, J.; Gray, S. K.; Rogers, J. A.; Nuzzo, R. G. Nanostructured plasmonic sensors. Chem. Rev. 2008, 108, 494–521.

31

Banholzer, M. J.; Millstone, J. E.; Qin, L. D.; Mirkin, C. A. Rationally designed nanostructures for surface-enhanced Raman spectroscopy. Chem. Soc. Rev. 2008, 37, 885–897.

32

Tao, A.; Sinsermsuksakul, P.; Yang, P. D. Tunable plasmonic lattices of silver nanocrystals. Nat. Nanotechnol. 2007, 2, 435–440.

33

Camden, J. P.; Dieringer, J. A.; Wang, Y. M.; Masiello, D. J.; Marks, L. D.; Schatz, G. C.; Van Duyne, R. P. Probing the structure of single-molecule surface-enhanced Raman scattering hot spots. J. Am. Chem. Soc. 2008, 130, 12616–12617.

34

Camden, J. P.; Dieringer, J. A.; Zhao, J.; Van Duyne, R. P. Controlled plasmonic nanostructures for surface-enhanced spectroscopy and sensing. Acc. Chem. Res. 2008, 41, 1653–1661.

35

Yan, B.; Thubagere, A.; Premasiri, W. R.; Ziegler, L. D.; Dal Negro, L.; Reinhard, B. M. Engineered SERS substrates with multiscale signal enhancement: Nanoplarticle cluster arrays. ACS Nano 2009, 3, 1190–1202.

36

Lassiter, J. B.; Aizpurua, J.; Hernandez, L. I.; Brandl, D. W.; Romero, I.; Lal, S.; Hafner, J. H.; Nordlander, P.; Halas, N. J. Close encounters between two nanoshells. Nano Lett. 2008, 8, 1212–1218.

37

Henzie, J.; Andrews, S. C.; Ling, X. Y.; Li, Z. Y.; Yang, P. D. Oriented assembly of polyhedral plasmonic nanoparticle clusters. Proc. Natl. Acad. Sci. USA 2013, 110, 6640–6645.

38

Mulvihill, M.; Tao, A.; Benjauthrit, K.; Arnold, J.; Yang, P. D. Surface-enhanced Raman spectroscopy for trace arsenic detection in contaminated water. Angew. Chem. Int. Ed. 2008, 120, 6556–6560.

39

McLellan, J. M.; Siekkinen, A.; Chen, J. Y.; Xia, Y. N. Comparison of the surface-enhanced Raman scattering on sharp and truncated silver nanocubes. Chem. Phys. Lett. 2006, 427, 122–126.

40

Mulvihill, M. J.; Ling, X. Y.; Henzie, J.; Yang, P. D. Anisotropic etching of silver nanoparticles for plasmonic structures capable of single-particle SERS. J. Am. Chem. Soc. 2010, 132, 268–274.

41

Camargo, P. H. C.; Rycenga, M.; Au, L.; Xia, Y. N. Isolating and probing the hot spot formed between two silver nanocubes. Angew. Chem. Int. Ed. 2009, 48, 2180–2184.

42

Hardcastle, F. D.; Ishihara, H.; Sharma, R.; Biris, A. S. Photoelectroactivity and Raman spectroscopy of anodized titania (TiO2) photoactive water-splitting catalysts as a function of oxygen-annealing temperature. J. Mater. Chem. 2011, 21, 6337–6345.

43

Yang, C. C.; Yu, Y. H.; van der Linden, B.; Wu, J. C. S.; Mul, G. Artificial photosynthesis over crystalline TiO2-based catalysts: Fact or fiction? J. Am. Chem. Soc. 2010, 132, 8398–8406.

44

Selloni, A. Crystal growth: Anatase shows its reactive side. Nat. Mater. 2008, 7, 613–615.

45

D'Arienzo, M.; Carbajo, J.; Bahamonde, A.; Crippa, M.; Polizzi, S.; Scotti, R.; Wahba, L.; Morazzoni, F. Photogenerated defects in shape-controlled TiO2 anatase nanocrystals: A probe to evaluate the role of crystal facets in photocatalytic processes. J. Am. Chem. Soc. 2011, 133, 17652–17661.

46

Yang, H. G.; Sun, C. H.; Qiao, S. Z.; Zou, J.; Liu, G.; Smith, S. C.; Cheng, H. M.; Lu, G. Q. Anatase TiO2 single crystals with a large percentage of reactive facets. Nature 2008, 453, 638–641.

47

Serpone, N.; Martin, J.; Horikoshi, S.; Hidaka, H. Photocatalyzed oxidation and mineralization of C1–C5 linear aliphatic acids in UV-irradiated aqueous titania dispersions—kinetics, identification of intermediates and quantum yields. J. Photochem. Photobiol. A 2005, 169, 235–251.

48

Ohsaka, T.; Izumi, F.; Fujiki, Y. Raman spectrum of anatase, TiO2. J. Raman Spectrosc. 1978, 7, 321–324.

49

Nakamoto, K. Infrared and Raman Spectra of Inorganic and Coordination Compounds: Part A: Theory and Applications in Inorganic Chemistry; Wiley-VCH: Weinheim, 2009.

50

Lin, W. Y.; Frei, H. Photochemical and FT-IR probing of the active site of hydrogen peroxide in Ti silicalite sieve. J. Am. Chem. Soc. 2002, 124, 9292–9298.

51

Zhang, J.; Li, M. J.; Feng, Z. C.; Chen, J.; Li, C. UV Raman spectroscopic study on TiO2. I. phase transformation at the surface and in the bulk. J. Phys. Chem. B 2006, 110, 927–935.

52

Nakamura, R.; Imanishi, A.; Murakoshi, K.; Nakato, Y. In situ FTIR studies of primary intermediates of photocatalytic reactions on nanocrystalline TiO2 films in contact with aqueous solutions. J. Am. Chem. Soc. 2003, 125, 7443–7450.

53

Connor, P. A.; Dobson, K. D.; McQuillan, A. J. Infrared spectroscopy of the TiO2/aqueous solution interface. Langmuir 1999, 15, 2402–2408.

54

Tao, A.; Sinsermsuksakul, P.; Yang, P. D. Polyhedral silver nanocrystals with distinct scattering signatures. Angew. Chem. Int. Ed. 2006, 45, 4597–4601.

55

Zhang, Y. W.; Grass, M. E.; Habas, S. E.; Tao, F.; Zhang, T. F.; Yang, P. D.; Somorjai, G. A., One-step polyol synthesis and Langmuir−Blodgett monolayer formation of size-tunable monodisperse Rhodium nanocrystals with catalytically active (111) surface structures. J. Phys. Chem. C 2007, 111, 12243–12253.

56

Tao, A. R.; Huang, J. X.; Yang, P. D. Langmuir−Blodgettry of nanocrystals and nanowires. Acc. Chem. Res. 2008, 41, 1662–1673.

57

Song, H.; Kim, F.; Connor, S.; Somorjai, G. A.; Yang, P. D. Pt nanocrystals: Shape control and Langmuir−Blodgett monolayer formation. J. Phys. Chem. B 2005, 109, 188–193.

Nano Research
Pages 132-143
Cite this article:
Yi Ling X, Yan R, Lo S, et al. Alumina-coated Ag nanocrystal monolayers as surface-enhanced Raman spectroscopy platforms for the direct spectroscopic detection of water splitting reaction intermediates. Nano Research, 2014, 7(1): 132-143. https://doi.org/10.1007/s12274-013-0380-0
Metrics & Citations  
Article History
Copyright
Return