Discover the SciOpen Platform and Achieve Your Research Goals with Ease.
Search articles, authors, keywords, DOl and etc.
Single crystalline CdTe nanowires have been synthesized using Au-catalyzed chemical vapor deposition. X-ray diffraction reveals the existence of non- negligible inhomogeneous compressive strain in the nanowires along the < 111 > growth direction. The effect of the strain on the electronic structure is manifested by the blue-shifted and broadened photoluminescence spectra involving shallow donor/acceptor states. Such residual strain is of great importance for a better understanding of the optical and electrical behaviors of various semiconductor nanomaterials as well as for device design and applications.
Xu, D. S.; Chen, D.; Xu, Y. J.; Shi, X. S.; Guo, G. L.; Gui, L. L.; Tang, Y. Q. Preparation of Ⅱ-Ⅵ group semiconductor nanowire arrays by dc electrochemical deposition in porous aluminum oxide templates. Pure Appl. Chem. 2000, 72, 127–135.
Wang, F. D.; Dong, A.; Sun, J.; Tang, R.; Yu, H.; Buhro, W. E. Solution-liquid-solid growth of semiconductor nanowires. Inorg. Chem. 2006, 45, 7511–7521.
Tang, Z. Q.; Kotov, N. A.; Giersig, M. Spontaneous organization of single CdTe nanoparticles into luminescent nanowires. Science 2002, 297, 237–240.
Yang, Q.; Tang, K.; Wang, C.; Qian, Y.; Zhang, S. Y. PVA-assisted synthesis and characterization of CdSe and CdTe nanowires. J. Phys. Chem. B 2002, 106, 9227–9230.
Yong, S. M.; Muralidharan, P.; Jo, S. H.; Kim, D. K. One-step hydrothermal synthesis of CdTe nanowires with amorphous carbon sheaths. Mater. Lett. 2010, 64, 1551–1554.
Hou, J. W.; Yang, X. C.; Lv, X.; Peng, D.; Huang, M.; Wang, Q. Y. One-step synthesis of CdTe branched nanowires and nanorod arrays. Appl. Surf. Sci. 2011, 257, 7684–7688.
Ye, Y.; Dai, L.; Sun, T.; You, L. P.; Zhu, R.; Gao, J. Y.; Peng, R. M.; Yu, D. P.; Qin, G. G. High-quality CdTe nanowires: Synthesis, characterization, and application in photoresponse devices. J. Appl. Phys. 2010, 108, 044301.
Hochbaum, A. I.; Fan, R.; He, R.; Yang, P. D. Controlled growth of Si nanowire arrays for device integration. Nano Lett. 2005, 5, 457–460.
Wang, D.; Dai, H. J. Low-temperature synthesis of single-crystal germanium nanowires by chemical vapor deposition. Angew. Chem. Int. Ed. 2002, 114, 4977–4980.
Utama, M. I. B.; Peng, Z.; Chen, R.; Peng, B.; Xu, X.; Dong, Y.; Wong, L. M.; Wang, S.; Sun, H.; Xiong, Q. H. Vertically aligned cadmium chalcogenide nanowire arrays on muscovite mica: A demonstration of epitaxial growth strategy. Nano Lett. 2011, 11, 3051–3057.
Lovergine, N.; Prete, P.; Cola, A.; Mazzer, M.; Cannoletta, D.; Mancini, A. M. Hydrogen transport vapor phase epitaxy of CdTe on hybrid substrates for X-ray detector applications. J. Electron. Mater. 1999, 28, 695–699.
Taraci, J. L.; Hÿtch, M. J.; Clement, T.; Peralta, P.; McCartney, M. R.; Drucker, J.; Picraux, S. T. Strain mapping in nanowires. Nanotechnology 2005, 16, 2365–2371.
Seo, H. W.; Bae, S. Y.; Park, J.; Yang, H.; Park, K. S.; Kim, S. Strained gallium nitride nanowires. J. Chem. Phys. 2002, 116, 9492–9499.
Li, S.; Yang, G. W. Universal scaling of semiconductor nanowires bandgap. Appl. Phys. Lett. , 2009, 95, 073106.
Sarkar, S.; Pal, S.; Sarkar, P. Electronic structure and band gap engineering of CdTe semiconductor nanowires. J. Mater. Chem. 2012, 22, 10716–10724.
Shi, W. S.; Zheng, Y. F.; Wang, N.; Lee, C. S.; Lee, S. T. Oxide-assisted growth and optical characterization of gallium-arsenide nanowires. Appl. Phys. Lett. 2001, 78, 3304–3306.
Ebina, A.; Takahashi, T. Studies of clean and adatom treated surfaces of Ⅱ-Ⅵ compounds. J. Cryst. Growth 1982, 59, 51–64.
Shin, H. Y.; Sun, C. Y. The exciton and edge emissions in CdTe crystals. Mater. Sci. Eng. B 1998, 52, 78–83.
Aguilar-Hernández, J.; Cárdenas-García, M.; Contreras-Puente, G.; Vidal-Larramendi, J. Analysis of the 1.55 eV PL band of CdTe polycrystalline films. Mater. Sci. Eng. B 2003, 102, 203–206.
Kraft, C.; Metzner, H.; Hädrich, M.; Reislöhner, U.; Schley, P.; Gobsch, G.; Goldhahn, R. Comprehensive photoluminescence study of chlorine activated polycrystalline cadmium telluride layers. J. Appl. Phys. 2010, 108, 124503.
Van Gheluwe, J.; Versluys, J.; Poelman, D.; Clauws, P. Photoluminescence study of polycrystalline CdS/CdTe thin film solar cells. Thin Solid Films 2005, 480–481, 264–268.
Molva, E.; Francou, J. M.; Pautrat, J. L.; Saminadayar, K.; Dang, L. S. Electrical and optical properties of Au in cadmium telluride. J. Appl. Phys. 1984, 56, 2241–2249.
Hildebrandt, S.; Uniewski, H.; Schreiber, J.; Leipner, H. S. Localization of Y luminescence at glide dislocations in cadmium telluride. J. Phys. Ⅲ France 1997, 7, 1505–1514.
Halliday, D. P.; Potter, M. D. G.; Mullins, J. T.; Brinkman, A. W. Photoluminescence study of a bulk vapour grown CdTe crystal. J. Cryst. Growth 2000, 220, 30–38.
Bimberg, D.; Sondergeld, M. Thermal dissociation of excitons bounds to neutral acceptors in high-purity GaAs. Phys. Rev. B 1971, 4, 3451–3455.
Van de Walle, C. G. Band lineups and deformation potentials in the model-solid theory. Phys. Rev. B 1989, 39, 1871–1883.