Discover the SciOpen Platform and Achieve Your Research Goals with Ease.
Search articles, authors, keywords, DOl and etc.
We demonstrate a pH sensor based on ultrasensitive nanosize Schottky junctions formed within bottom-up grown dopant-free arrays of assembled silicon nanowires. A new measurement concept relying on a continuous gate sweep is presented, which allows the straightforward determination of the point of maximum sensitivity of the device and allows sensing experiments to be performed in the optimum regime. Integration of devices into a portable fluidic system and an electrode isolation strategy affords a stable environment and enables long time robust FET sensing measurements in a liquid environment to be carried out. Investigations of the physical and chemical sensitivity of our devices at different pH values and a comparison with theoretical limits are also discussed. We believe that such a combination of nanofabrication and engineering advances makes this Schottky barrier-powered silicon nanowire lab-on-a-chip platform suitable for efficient biodetection and even for more complex biochemical analysis.
Bergveld, P. Development of an ion-sensitive solid-state device for neurophysiological measurement. IEEE T. Bio-Med. Eng. 1970, BME-17, 70–71.
Bergveld, P. The impact of MOSFET-based sensors. Sensor. Actuat. 1985, 8, 109–127.
Cui, Y.; Wei, Q. Q.; Park, H.; Lieber, C. M. Nanowire nanosensors for highly sensitive and selective detection of biological and chemical species. Science 2001, 293, 1289– 1292.
Spijkman, M. -J.; Brondijk, J. J.; Geuns, T. C. T.; Smits, E. C. P.; Cramer, T.; Zerbetto, F.; Stoliar, P.; Biscarini, F.; Blom, P. W. M.; de Leeuw, D. M. Dual-gate organic field- effect transistors as potentiometric sensors in aqueous solution. Adv. Funct. Mater. 2010, 20, 898–905.
Zumdahl, S. Chemical Principles (6th ed. ); Houghton Mifflin Company; New York, 2009; pp 319–324.
Hahm, J.; Lieber, C. M. Direct ultrasensitive electrical detection of DNA and DNA sequence variations using nanowire nanosensors. Nano Lett. 2004, 4, 51–54.
Gao, Z. Q.; Agarwal, A.; Trigg, A. D.; Singh, N.; Fang, C.; Tung, C. -H.; Fan, Y.; Buddharaju, K. D.; Kong, J. M. Silicon nanowire arrays for label-free detection of DNA. Anal. Chem. 2007, 79, 3291–3297.
Cattani-Scholz, A.; Pedone, D.; Dubey, M.; Neppl, S.; Nickel, B.; Feulner, P.; Schwartz, J.; Abstreiter, G.; Tornow, M. Organophosphonate-based PNA-functionalization of silicon nanowires for label-free DNA detection. ACS Nano 2008, 2, 1653–1660.
Gao, A. R.; Lu, N.; Dai, P. F.; Li, T.; Pei, H.; Gao, X. L.; Gong, Y. B.; Wang, Y. L.; Fan, C. H. Silicon-nanowire- based CMOS-compatible field-effect transistor nanosensors for ultrasensitive electrical detection of nucleic acids. Nano Lett. 2011, 11, 3974–3978.
Kurkina, T.; Vlandas, A.; Ahmad, A.; Kern, K.; Balasubramanian, K. Label-free detection of few copies of DNA with carbon nanotube impedance biosensors. Angew. Chem. Int. Ed. 2011, 50, 3710–3714.
Patolsky, F.; Zheng, G. F.; Hayden, O.; Lakadamyali, M.; Zhuang, X. W.; Lieber, C. M. Electrical detection of single viruses. PNAS 2004, 101, 14017–14022.
Zheng, G. F.; Patolsky, F.; Cui, Y.; Wang, W. U.; Lieber, C. M. Multiplexed electrical detection of cancer markers with nanowire sensor arrays. Nat. Biotechnol. 2005, 23, 1294– 1301.
Susloparova, A.; Koppenhöfer, D.; Vu, X. T.; Weil, M.; Ingebrandt, S. Impedance spectroscopy with field-effect transistor arrays for the analysis of anti-cancer drug action on individual cells. Biosens. Bioelectron. 2012, 40, 50–56.
Patolsky, F.; Timko, B.; Yu, G. H.; Fang, Y.; Greytak, A.; Zheng, G. F.; Lieber, C. M. Detection, stimulation, and inhibition of neuronal signals with high-density nanowire transistor arrays. Science 2006, 313, 1100–1104.
Lambacher, A.; Vitzthum, V.; Zeitler, R.; Eickenscheidt, M.; Eversmann, B.; Thewes, R.; Fromherz, P. Identifying firing mammalian neurons in networks with high-resolution multitransistor array (MTA). Appl. Phys. A 2011, 102, 1–11.
Esashi, M.; Matsuo, T. Integrated micro multi ion sensor using field effect of semiconductor. IEEE T. Bio-Med. Eng. 1978, BME-25, 184–192.
Elfström, N.; Karlström, A. E.; Linnros, J. Silicon nanoribbons for electrical detection of biomolecules. Nano Lett. 2008, 8, 945–949.
Vu, X. T.; Ghoshmoulick, R.; Eschermann, J. F.; Stockmann, R.; Offenhäusser, A.; Ingebrandt, S. Fabrication and application of silicon nanowire transistor arrays for biomolecular detection. Sensor. Actuat. B–Chem. 2010, 144, 354–360.
Patolsky, F.; Zheng, G. F.; Lieber, C. M. Fabrication of silicon nanowire devices for ultrasensitive, label-free, real-time detection of biological and chemical species. Nat. Protocol. 2006, 1, 1711–1724.
Balasubramanian, K.; Lee, E. J. H.; Weitz, R. T.; Burghard, M.; Kern, K. Carbon nanotube transistors—Chemical functionalization and device characterization. Phys. Stat. Solidi A 2008, 205, 633–646.
Iijima, S. Helical microtubules of graphitic carbon. Nature 1991, 354, 56–58.
Wu, Y.; Cui, Y.; Huynh, L.; Barrelet, C. J.; Bell, D. C.; Lieber, C. M. Controlled growth and structures of molecular- scale silicon nanowires. Nano Lett. 2004, 4, 433–436.
Nerowski, A.; Poetschke, M.; Bobeth, M.; Opitz, J.; Cuniberti, G. Dielectrophoretic growth of platinum nanowires: Concentration and temperature dependence of the growth velocity. Langmuir 2012, 28, 7498–7504.
Shin, K. -S.; Pan, A.; Chui, C. O. Channel length dependent sensitivity of Schottky contacted silicon nanowire field-effect transistor sensors. Appl. Phys. Lett. 2012, 100, 123504.
Pregl, S.; Weber, W. M.; Nozaki, D.; Kunstmann, J.; Baraban, L.; Opitz, J.; Mikolajick, T.; Cuniberti, G. Parallel arrays of Schottky barrier nanowire field effect transistors: Nanoscopic effects for macroscopic current output. Nano Res. 2013, 6, 381–388.
Weber, W. M.; Geelhaar, L.; Graham, A. P.; Unger, E.; Duesberg, G. S.; Liebau, M.; Pamler, W.; Chèze, C.; Riechert, H.; Lugli, P.; et al. Silicon-nanowire transistors with intruded nickel-silicide contacts. Nano Lett. 2006, 6, 2660–2666.
Heinzig, A.; Slesazeck, S.; Kreupl, F.; Mikolajick, T.; Weber, W. M. Reconfigurable silicon nanowire transistors. Nano Lett. 2012, 12, 119–124.
Martin, D.; Heinzig, A.; Grube, M.; Geelhaar, L.; Mikolajick, T.; Riechert, H.; Weber, W. M. Direct probing of Schottky barriers in Si nanowire Schottky barrier field effect transistors. Phys. Rev. Lett. 2011, 107, 216807.
Nozaki, D.; Kunstmann, J.; Zörgiebel, F. M.; Weber, W. M.; Mikolajick, T.; Cuniberti, G. Multiscale modeling of nanowire-based Schottky-barrier field-effect transistors for sensor applications. Nanotechnology 2011, 22, 325703.
Gao, X. P. A.; Zheng, G. F.; Lieber, C. M. Subthreshold regime has the optimal sensitivity for nanowire FET biosensors. Nano Lett. 2010, 10, 547–552.
Hu, Y. F.; Zhou, J.; Yeh, P. -H.; Li, Z.; Wei, T. -Y.; Wang, Z. L. Supersensitive, fast-response nanowire sensors by using Schottky contacts. Adv. Mater. 2010, 22, 3327–3332.
Skucha, K.; Fan, Z. Y.; Jeon, K.; Javey, A.; Boser, B. Palladium/silicon nanowire Schottky barrier-based hydrogen sensors. Sensor. Actuat. : B—Chem. 2010, 145, 232–238.
Bergveld, P. Thirty years of ISFETOLOGY: What happened in the past 30 years and what may happen in the next 30 years. Sensor. Actuat. : B–Chem. 2003, 88, 1–20.
Knopfmacher, O.; Tarasov, A.; Fu, W. Y.; Wipf, M.; Niesen, B.; Calame, M.; Schönenberger, C. Nernst limit in dual-gated Si-nanowire FET sensors. Nano Lett. 2010, 10, 2268–2274.
Spijkman, M.; Smits, E. C. P.; Cillessen, J. F. M.; Biscarini, F.; Blom, P. W. M.; de Leeuw, D. M. Beyond the Nernst- limit with dual-gate ZnO ion-sensitive field-effect transistors. Appl. Phys. Lett. 2011, 98, 043502.
Bergveld, P. ISFET, Theory and Practice. IEEE Sensor Conference, October 2003. IEEE: Toronto, 2003.
Tarasov, A.; Wipf, M.; Bedner, K.; Kurz, J.; Fu, W.; Guzenko, V. A.; Knopfmacher, O.; Stoop, R. L.; Calame, M.; Schönenberger, C. True reference nanosensor realized with silicon nanowires. Langmuir 2012, 28, 9899–9905.
Fan, Z. Y.; Ho, J.; Jacobson, Z.; Yerushalmi, R.; Alley, R.; Razavi, H.; Javey, A. Wafer-scale assembly of highly ordered semiconductor nanowire arrays by contact printing. Nano Lett. 2008, 8, 20–25.
Ishikawa, F.; Chang, H. -K.; Ryu, K.; Chen, P. -C.; Badmaev, A.; De Arco, L. G.; Shen, G. Z.; Zhou, C. W. Transparent electronics based on transfer printed aligned carbon nanotubes on rigid and flexible substrates. ACS Nano 2009, 3, 73–79.