AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Schottky barrier-based silicon nanowire pH sensor with live sensitivity control

Felix M. Zörgiebel1,5Sebastian Pregl1,5Lotta Römhildt1Jörg Opitz3W. Weber2,5T. Mikolajick4,5Larysa Baraban1( )Gianaurelio Cuniberti1,5
Institute for Materials Science and Max Bergmann Center of Biomaterials TU Dresden 01062 Dresden, Germany
NaMLab GmbH 01187 Dresden, Germany
Fraunhofer Institute IZFP Dresden 01109 Dresden, Germany
Institute for Semiconductors and Microsystems Technology, TU Dresden 01187 Dresden, Germany
Dresden, Germany, Center for Advancing Electronics Dresden, TU Dresden 01062 Dresden, Germany
Show Author Information

Graphical Abstract

Abstract

We demonstrate a pH sensor based on ultrasensitive nanosize Schottky junctions formed within bottom-up grown dopant-free arrays of assembled silicon nanowires. A new measurement concept relying on a continuous gate sweep is presented, which allows the straightforward determination of the point of maximum sensitivity of the device and allows sensing experiments to be performed in the optimum regime. Integration of devices into a portable fluidic system and an electrode isolation strategy affords a stable environment and enables long time robust FET sensing measurements in a liquid environment to be carried out. Investigations of the physical and chemical sensitivity of our devices at different pH values and a comparison with theoretical limits are also discussed. We believe that such a combination of nanofabrication and engineering advances makes this Schottky barrier-powered silicon nanowire lab-on-a-chip platform suitable for efficient biodetection and even for more complex biochemical analysis.

Electronic Supplementary Material

Download File(s)
nr-7-2-263_ESM.pdf (751.3 KB)

References

1

Bergveld, P. Development of an ion-sensitive solid-state device for neurophysiological measurement. IEEE T. Bio-Med. Eng. 1970, BME-17, 70–71.

2

Bergveld, P. The impact of MOSFET-based sensors. Sensor. Actuat. 1985, 8, 109–127.

3

Cui, Y.; Wei, Q. Q.; Park, H.; Lieber, C. M. Nanowire nanosensors for highly sensitive and selective detection of biological and chemical species. Science 2001, 293, 1289– 1292.

4

Spijkman, M. -J.; Brondijk, J. J.; Geuns, T. C. T.; Smits, E. C. P.; Cramer, T.; Zerbetto, F.; Stoliar, P.; Biscarini, F.; Blom, P. W. M.; de Leeuw, D. M. Dual-gate organic field- effect transistors as potentiometric sensors in aqueous solution. Adv. Funct. Mater. 2010, 20, 898–905.

5

Zumdahl, S. Chemical Principles (6th ed. ); Houghton Mifflin Company; New York, 2009; pp 319–324.

6

Hahm, J.; Lieber, C. M. Direct ultrasensitive electrical detection of DNA and DNA sequence variations using nanowire nanosensors. Nano Lett. 2004, 4, 51–54.

7

Gao, Z. Q.; Agarwal, A.; Trigg, A. D.; Singh, N.; Fang, C.; Tung, C. -H.; Fan, Y.; Buddharaju, K. D.; Kong, J. M. Silicon nanowire arrays for label-free detection of DNA. Anal. Chem. 2007, 79, 3291–3297.

8

Cattani-Scholz, A.; Pedone, D.; Dubey, M.; Neppl, S.; Nickel, B.; Feulner, P.; Schwartz, J.; Abstreiter, G.; Tornow, M. Organophosphonate-based PNA-functionalization of silicon nanowires for label-free DNA detection. ACS Nano 2008, 2, 1653–1660.

9

Gao, A. R.; Lu, N.; Dai, P. F.; Li, T.; Pei, H.; Gao, X. L.; Gong, Y. B.; Wang, Y. L.; Fan, C. H. Silicon-nanowire- based CMOS-compatible field-effect transistor nanosensors for ultrasensitive electrical detection of nucleic acids. Nano Lett. 2011, 11, 3974–3978.

10

Kurkina, T.; Vlandas, A.; Ahmad, A.; Kern, K.; Balasubramanian, K. Label-free detection of few copies of DNA with carbon nanotube impedance biosensors. Angew. Chem. Int. Ed. 2011, 50, 3710–3714.

11

Patolsky, F.; Zheng, G. F.; Hayden, O.; Lakadamyali, M.; Zhuang, X. W.; Lieber, C. M. Electrical detection of single viruses. PNAS 2004, 101, 14017–14022.

12

Zheng, G. F.; Patolsky, F.; Cui, Y.; Wang, W. U.; Lieber, C. M. Multiplexed electrical detection of cancer markers with nanowire sensor arrays. Nat. Biotechnol. 2005, 23, 1294– 1301.

13

Susloparova, A.; Koppenhöfer, D.; Vu, X. T.; Weil, M.; Ingebrandt, S. Impedance spectroscopy with field-effect transistor arrays for the analysis of anti-cancer drug action on individual cells. Biosens. Bioelectron. 2012, 40, 50–56.

14

Patolsky, F.; Timko, B.; Yu, G. H.; Fang, Y.; Greytak, A.; Zheng, G. F.; Lieber, C. M. Detection, stimulation, and inhibition of neuronal signals with high-density nanowire transistor arrays. Science 2006, 313, 1100–1104.

15

Lambacher, A.; Vitzthum, V.; Zeitler, R.; Eickenscheidt, M.; Eversmann, B.; Thewes, R.; Fromherz, P. Identifying firing mammalian neurons in networks with high-resolution multitransistor array (MTA). Appl. Phys. A 2011, 102, 1–11.

16

Esashi, M.; Matsuo, T. Integrated micro multi ion sensor using field effect of semiconductor. IEEE T. Bio-Med. Eng. 1978, BME-25, 184–192.

17

Elfström, N.; Karlström, A. E.; Linnros, J. Silicon nanoribbons for electrical detection of biomolecules. Nano Lett. 2008, 8, 945–949.

18

Vu, X. T.; Ghoshmoulick, R.; Eschermann, J. F.; Stockmann, R.; Offenhäusser, A.; Ingebrandt, S. Fabrication and application of silicon nanowire transistor arrays for biomolecular detection. Sensor. Actuat. B–Chem. 2010, 144, 354–360.

19

Patolsky, F.; Zheng, G. F.; Lieber, C. M. Fabrication of silicon nanowire devices for ultrasensitive, label-free, real-time detection of biological and chemical species. Nat. Protocol. 2006, 1, 1711–1724.

20

Balasubramanian, K.; Lee, E. J. H.; Weitz, R. T.; Burghard, M.; Kern, K. Carbon nanotube transistors—Chemical functionalization and device characterization. Phys. Stat. Solidi A 2008, 205, 633–646.

21

Iijima, S. Helical microtubules of graphitic carbon. Nature 1991, 354, 56–58.

22

Wu, Y.; Cui, Y.; Huynh, L.; Barrelet, C. J.; Bell, D. C.; Lieber, C. M. Controlled growth and structures of molecular- scale silicon nanowires. Nano Lett. 2004, 4, 433–436.

23

Nerowski, A.; Poetschke, M.; Bobeth, M.; Opitz, J.; Cuniberti, G. Dielectrophoretic growth of platinum nanowires: Concentration and temperature dependence of the growth velocity. Langmuir 2012, 28, 7498–7504.

24

Shin, K. -S.; Pan, A.; Chui, C. O. Channel length dependent sensitivity of Schottky contacted silicon nanowire field-effect transistor sensors. Appl. Phys. Lett. 2012, 100, 123504.

25

Pregl, S.; Weber, W. M.; Nozaki, D.; Kunstmann, J.; Baraban, L.; Opitz, J.; Mikolajick, T.; Cuniberti, G. Parallel arrays of Schottky barrier nanowire field effect transistors: Nanoscopic effects for macroscopic current output. Nano Res. 2013, 6, 381–388.

26

Weber, W. M.; Geelhaar, L.; Graham, A. P.; Unger, E.; Duesberg, G. S.; Liebau, M.; Pamler, W.; Chèze, C.; Riechert, H.; Lugli, P.; et al. Silicon-nanowire transistors with intruded nickel-silicide contacts. Nano Lett. 2006, 6, 2660–2666.

27

Heinzig, A.; Slesazeck, S.; Kreupl, F.; Mikolajick, T.; Weber, W. M. Reconfigurable silicon nanowire transistors. Nano Lett. 2012, 12, 119–124.

28

Martin, D.; Heinzig, A.; Grube, M.; Geelhaar, L.; Mikolajick, T.; Riechert, H.; Weber, W. M. Direct probing of Schottky barriers in Si nanowire Schottky barrier field effect transistors. Phys. Rev. Lett. 2011, 107, 216807.

29

Nozaki, D.; Kunstmann, J.; Zörgiebel, F. M.; Weber, W. M.; Mikolajick, T.; Cuniberti, G. Multiscale modeling of nanowire-based Schottky-barrier field-effect transistors for sensor applications. Nanotechnology 2011, 22, 325703.

30

Gao, X. P. A.; Zheng, G. F.; Lieber, C. M. Subthreshold regime has the optimal sensitivity for nanowire FET biosensors. Nano Lett. 2010, 10, 547–552.

31

Hu, Y. F.; Zhou, J.; Yeh, P. -H.; Li, Z.; Wei, T. -Y.; Wang, Z. L. Supersensitive, fast-response nanowire sensors by using Schottky contacts. Adv. Mater. 2010, 22, 3327–3332.

32

Skucha, K.; Fan, Z. Y.; Jeon, K.; Javey, A.; Boser, B. Palladium/silicon nanowire Schottky barrier-based hydrogen sensors. Sensor. Actuat. : B—Chem. 2010, 145, 232–238.

33

Bergveld, P. Thirty years of ISFETOLOGY: What happened in the past 30 years and what may happen in the next 30 years. Sensor. Actuat. : B–Chem. 2003, 88, 1–20.

34

Knopfmacher, O.; Tarasov, A.; Fu, W. Y.; Wipf, M.; Niesen, B.; Calame, M.; Schönenberger, C. Nernst limit in dual-gated Si-nanowire FET sensors. Nano Lett. 2010, 10, 2268–2274.

35

Spijkman, M.; Smits, E. C. P.; Cillessen, J. F. M.; Biscarini, F.; Blom, P. W. M.; de Leeuw, D. M. Beyond the Nernst- limit with dual-gate ZnO ion-sensitive field-effect transistors. Appl. Phys. Lett. 2011, 98, 043502.

36

Bergveld, P. ISFET, Theory and Practice. IEEE Sensor Conference, October 2003. IEEE: Toronto, 2003.

37

Tarasov, A.; Wipf, M.; Bedner, K.; Kurz, J.; Fu, W.; Guzenko, V. A.; Knopfmacher, O.; Stoop, R. L.; Calame, M.; Schönenberger, C. True reference nanosensor realized with silicon nanowires. Langmuir 2012, 28, 9899–9905.

38

Fan, Z. Y.; Ho, J.; Jacobson, Z.; Yerushalmi, R.; Alley, R.; Razavi, H.; Javey, A. Wafer-scale assembly of highly ordered semiconductor nanowire arrays by contact printing. Nano Lett. 2008, 8, 20–25.

39

Ishikawa, F.; Chang, H. -K.; Ryu, K.; Chen, P. -C.; Badmaev, A.; De Arco, L. G.; Shen, G. Z.; Zhou, C. W. Transparent electronics based on transfer printed aligned carbon nanotubes on rigid and flexible substrates. ACS Nano 2009, 3, 73–79.

Nano Research
Pages 263-271
Cite this article:
Zörgiebel FM, Pregl S, Römhildt L, et al. Schottky barrier-based silicon nanowire pH sensor with live sensitivity control. Nano Research, 2014, 7(2): 263-271. https://doi.org/10.1007/s12274-013-0393-8

665

Views

44

Crossref

N/A

Web of Science

46

Scopus

2

CSCD

Altmetrics

Received: 14 September 2013
Revised: 20 November 2013
Accepted: 21 November 2013
Published: 03 January 2014
© Tsinghua University Press and Springer-Verlag Berlin Heidelberg 2013
Return