AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Tunable D peak in gated graphene

Anna Ott1Ivan A. Verzhbitskiy1Joseph Clough2Axel Eckmann3Thanasis Georgiou2Cinzia Casiraghi1,3( )
Physics Department Freie Universität BerlinBerlin 14195 Germany
School of Physics and Astronomy University of Manchester, Manchester M13 9PL UK
School of Chemistry University of Manchester, Manchester M13 9PL UK
Show Author Information

Graphical Abstract

Abstract

We report the gate-modulated Raman spectrum of defective graphene. We show that the intensity of the D peak can be reversibly tuned by applying a gate voltage. This effect is attributed to chemical functionalization of the graphene crystal lattice, generated by an electrochemical reaction involving the water layer trapped at the interface between silicon and graphene.

Electronic Supplementary Material

Download File(s)
nr-7-3-338_ESM.pdf (659.6 KB)

References

1

Geim, A. K.; Novoselov, K. S. The rise of graphene. Nat. Mater. 2007, 6, 183–191.

2

Novoselov, K. S.; Fal'ko, V. I.; Colombo, L.; Gellert, P. R.; Schwab, M. G.; Kim, K. A roadmap for graphene. Nature 2012, 490, 192–200.

3
Casiraghi, C. Raman spectroscopy of graphene. In Spectroscopic Properties of Inorganic and Organometallic Compounds: Techniques, Materials and Applications. Yarwood, J.; Douthwaite, R.; Duckett, S., Eds., RSC Publishing: Cambridge, 2012; pp. 29–56.https://doi.org/10.1039/9781849734899-00029
4

Ferrari, A. C.; Meyer, J. C.; Scardaci, V.; Casiraghi, C.; Lazzeri, M.; Mauri, F.; Piscanec, S.; Jiang, D.; Novoselov, K. S.; Roth, S.; Geim, A. K. Raman spectrum of graphene and graphene layers. Phys. Rev. Lett. 2006, 97, 187401.

5

Lazzeri, M.; Mauri, F. Non-adiabatic Kohn-anomaly in a doped graphene monolayer. Phys. Rev. Lett. 2006, 97, 266407.

6

Pisana, S.; Lazzeri, M.; Casiraghi, C.; Novoselov, K. S.; Geim, A. K.; Ferrari, A. C.; Mauri, F. Breakdown of the adiabatic Born–Oppenheimer approximation in graphene. Nat. Mater. 2007, 6, 198–201.

7

Casiraghi, C.; Pisana, S.; Novoselov, K. S.; Geim, A. K.; Ferrari, A. C. Raman fingerprint of charged impurities in graphene. Appl. Phys. Lett. 2007, 91, 233108.

8

Das, A.; Pisana, S.; Chakraborty, B.; Piscanec, S.; Saha, S. K.; Waghmare, U. V.; Novoselov, K. S.; Krishnamurthy, H. R.; Geim, A. K.; Ferrari, A. C.; Sood, A. K. Monitoring dopants by Raman scattering in an electrochemically top-gated graphene transistor. Nat. Nanotechnol. 2008, 3, 210–215.

9

Mohiuddin, T. M. G.; Lombardo, A.; Nair, R. R.; Bonetti, A.; Savini, G.; Jalil, R.; Bonini, N.; Basko, D. M.; Galiotis, C.; Marzari, N.; et al. Uniaxial strain in graphene by Raman spectroscopy: G peak splitting, Grüneisen parameters, and sample orientation. Phys. Rev. B 2009, 79, 205433.

10

Zabel, J.; Nair, R. R.; Ott, A.; Georgiou, T.; Geim, A. K.; Novoselov, K. S.; Casiraghi, C. Raman spectroscopy of graphene and bilayer under biaxial strain: Bubbles and balloons. Nano Lett. 2012, 12, 617–621.

11

Lucchese, M. M.; Stavale, F.; Ferreira, E. H. M.; Vilani, C.; Moutinho, M. V. O.; Capaz, R. B.; Achete, C. A.; Jorio, A. Quantifying ion-induced defects and Raman relaxation length in graphene. Carbon 2010, 48, 1592–1597.

12

Ferreira, E. H. M.; Moutinho, M. V. O.; Stavale, F.; Lucchese, M. M.; Capaz, R. B.; Achete, C. A.; Jorio, A. Evolution of the Raman spectra from single-, few-, and many-layer graphene with increasing disorder. Phys. Rev. B 2010, 82, 125429.

13

Canςado, L. G.; Jorio, A.; Martins Ferreira, E. H.; Stavale, F.; Achete, C. A.; Capaz, R. B.; Moutinho, M. V. O.; Lombardo, A.; Kulmala, T. S.; Ferrari, A. C. Quantifying defects in graphene via Raman spectroscopy at different excitation energies. Nano Lett. 2011, 11, 3190–3196.

14

Eckmann, A.; Felten, A.; Mishchenko, A.; Britnell, L.; Krupke, R.; Novoselov, K. S.; Casiraghi, C. Probing the nature of defects in graphene by Raman spectroscopy. Nano Lett. 2012, 12, 3925–3930.

15

Eckmann, A.; Felten, A.; Verzhbitskiy, I.; Davey, R.; Casiraghi, C. Raman study on defective graphene: Effect of the excitation energy, type, and amount of defects. Phys. Rev. B 2013, 88, 035426.

16

Elias, D. C.; Nair, R. R.; Mohiuddin, T. M. G.; Morozov, S. V.; Blake, P.; Halsall, M. P.; Ferrari, A. C.; Boukhvalov, D. W.; Katsnelson, M. I.; Geim, A. K.; et al. Control of graphene's properties by reversible hydrogenation: Evidence for graphane. Science 2009, 323, 610–613.

17

Nair, R. R.; Ren, W.; Jalil, R.; Riaz, I.; Kravets, V. G.; Britnell, L.; Blake, P.; Schedin, F.; Mayorov, A. S.; Yuan, S. J.; et al. Fluorographene: A two-dimensional counterpart of Teflon. Small 2010, 6, 2877–2884.

18

Felten, A.; Flavel, B. S.; Britnell, L.; Eckmann, A.; Louette, P.; Pireaux, J. -J.; Hirtz, M.; Krupke, R.; Casiraghi, C. Single-and double-sided chemical functionalization of bilayer graphene. Small 2013, 9, 631–639.

19

Casiraghi, C.; Hartschuh, A.; Qian, H.; Piscanec, S.; Georgi, C.; Fasoli, A.; Novoselov, K. S.; Basko, D. M.; Ferrari, A. C. Raman spectroscopy of graphene edges. Nano Lett. 2009, 9, 1433–1441.

20

Carozo, V.; Almeida C. M.; Ferreira, E. H. M.; Cancado, L. G.; Achete, C. A.; Jorio, A. Raman signature of graphene superlattices. Nano Lett. 2011, 11, 4527–4534.

21

Kim, K.; Coh, S.; Tan, L. Z.; Regan, W.; Min Yuk J.; Chatterjee, E.; Crommie, M. F.; Cohen, M. L.; Louie, S. G.; Zettl, A. Raman spectroscopy study of rotated double-layer graphene: Misorientation-angle dependence of electronic structure. Phys. Rev. Lett. 2012, 108, 246103.

22

Eckmann, A.; Park, J.; Yang, H.; Elias, D.; Mayorov, A. S.; Yu, G.; Jalil, R.; Novoselov, K. S.; Gorbachev, R. V.; Lazzeri, M.; et al. Raman fingerprint of aligned graphene/h-BN superlattice. Nano Lett. 2013, 13, 5242–5246.

23

Basko, D. M. Calculation of the Raman G peak intensity in monolayer graphene: Role of Ward identities. New J. Phys. 2009, 11, 095011.

24

Kalbac, M.; Reina-Cecco, A.; Farhat, H.; Kong, J.; Kavan, L.; Dresselhaus, M. S. The influence of strong electron and hole doping on the Raman intensity of chemical vapor-deposition graphene. ACS Nano 2010, 4, 6055–6063.

25

Chen, C.; Park, C.; Boudouris, B.W.; Horng, J.; Geng, B.; Girit, C.; Zettl, A.; Crommie, M. F.; Segalman, R. A.; Louie, S. G.; Wang, F. Controlling inelastic light scattering quantum pathways in graphene. Nature 2011, 471, 617–620.

26

Araujo, P. T.; Mafra, D. L.; Sato, K.; Saito, R.; Kong, J.; Dresselhaus, M. S. Phonon self-energy corrections to nonzero wave-vector phonon modes in single-layer graphene. Phys. Rev. Lett. 2012, 109, 046801.

27

Georgiou, T.; Britnell, L.; Blake, P.; Gorbachev, R. V.; Gholinia, A.; Geim, A. K.; Casiraghi, C.; Novoselov, K. S. Graphene bubbles with controllable curvature. Appl. Phys. Lett. 2011, 99, 093103.

28

Casiraghi, C. Probing disorder and charged impurities in graphene by Raman spectroscopy. Phys. Status Solidi RRL 2009, 3, 175–177.

29

Basko, D. M.; Piscanec, S.; Ferrari, A. C. Electron–electron interactions and doping dependence of the two-phonon Raman intensity in graphene. Phys. Rev. B 2009, 80, 165413.

30

Casiraghi, C. Doping dependence of the Raman peaks intensity of graphene close to the Dirac point. Phys. Rev. B 2009, 80, 233407.

31

Boukhvalov, D. W.; Katsnelson, M. I. Chemical functionalization of graphene with defects. Nano Lett. 2008, 8, 4373–4379.

32

Piscanec, S.; Lazzeri, M.; Mauri, F.; Ferrari, A. C.; Robertson, J. Kohn anomalies and electron–phonon interactions in graphite. Phys. Rev. Lett. 2004, 93, 185503.

33

Opitz, A.; Scherge, M.; Ahmed, S. I. -U.; Schaefer, J. A. A comparative investigation of thickness measurements of ultra-thin water films by scanning probe techniques. J. Appl. Phys. 2007, 101, 064310.

34

Schedin, F.; Geim, A. K.; Morozov, S. V.; Hill, E. W.; Blake, P.; Katsnelson, M. I.; Novoselov, K. S. Detection of individual gas molecules adsorbed on graphene. Nat. Mater. 2007, 6, 652–655.

35

Bakos, T.; Rashkeev, S. N.; Pantelides, S. T. H2O and O2 molecules in amorphous SiO2: Defect formation and annihilation mechanisms. Phys. Rev. B 2004, 69, 195206.

36

Vanheusden, K.; Warren, W. L.; Devine, R. A. B.; Fleetwood, D. M.; Schwank, J. R.; Shaneyfelt, M. R.; Winokur, P. S.; Lemnios, Z. J. Non-volatile memory device based on mobile protons in SiO2 thin films. Nature 1997, 386, 587–589.

37

Suarez, A. M.; Radovic, L. R.; Bar-Ziv, E.; Sofo, J. O. Gate-voltage control of oxygen diffusion on graphene. Phys. Rev. Lett. 2011, 106, 146802.

38

Echtermeyer, T. J.; Lemme, M. C.; Baus, M.; Szafranek, B. N.; Geim, A. K.; Kurz, H. Nonvolatile switching in graphene field-effect devices. IEEE Electron Dev. Lett. 2008, 29, 952–954.

39

Fu, W.; Nef, C.; Knopfmacher, O.; Tarasov, A.; Weiss, M.; Calame, M.; Schönenberger, C. Graphene transistors are insensitive to pH changes in solution. Nano Lett. 2011, 11, 3597–3600.

40

Ang, P. K.; Chen, W.; Wee, A. T. S.; Loh, K. P. Solution-gated epitaxial graphene as pH sensor. J. Am. Chem. Soc. 2008, 130, 14392–14393.

41

Atkins, P. W.; de Paula, J. Atkins' Physical Chemistry, 9th edition; Oxford University Press: Oxford, 2010.

Nano Research
Pages 338-344
Cite this article:
Ott A, Verzhbitskiy IA, Clough J, et al. Tunable D peak in gated graphene. Nano Research, 2014, 7(3): 338-344. https://doi.org/10.1007/s12274-013-0399-2

573

Views

22

Crossref

N/A

Web of Science

21

Scopus

0

CSCD

Altmetrics

Received: 25 July 2013
Revised: 05 December 2013
Accepted: 10 December 2013
Published: 04 January 2014
© Tsinghua University Press and Springer-Verlag Berlin Heidelberg 2013
Return