AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Large-scale dendrimer-based uneven nanopatterns for the study of local arginine–glycine–aspartic acid (RGD) density effects on cell adhesion

Anna Lagunas1,2( )Albert G. Castaño2,1Juan M. Artés2,3,Yolanda Vida4,5Daniel Collado4,5Ezequiel Pérez-Inestrosa4,5Pau Gorostiza2,1,6Silvia Claros7,1José A. Andrades7,1Josep Samitier1,2,8
Networking Biomedical Research Center in Bioengineering Biomaterials and Nanomedicine (CIBER-BBN) Spain
Institute for Bioengineering of Catalonia (IBEC) Baldiri-Reixac 15-21Barcelona 08028 Spain
Physical Chemistry Department, University of Barcelona (UB) Martí i Franquès 1-11Barcelona 08028 Spain
Andalusian Centre for Nanomedicine and Biotechnology (BIONAND) Severo Ochoa 35Málaga 29590 Spain
Organic Chemistry Department, University of Málaga (UMA) Campus TeatinosMálaga 29071 Spain
Institució Catalana de Recerca i Estudis Avançats (ICREA) Spain
Cell Biology, Genetics and Physiology Department, University of Málaga (UMA) Campus TeatinosMálaga 29071 Spain
Electronics Department, University of Barcelona (UB) Martí i Franquès 1-11Barcelona 08028 Spain

Present address: Electrical and Computer Engineering Department, University of California Davis, 95616 Davis CA, USA

Show Author Information

Graphical Abstract

Abstract

Cell adhesion processes are governed by the nanoscale arrangement of the extracellular matrix (ECM), being more affected by local rather than global concentrations of cell adhesive ligands. In many cell-based studies, grafting of dendrimers on surfaces has shown the benefits of the local increase in concentration provided by the dendritic configuration, although the lack of any reported surface characterization has limited any direct correlation between dendrimer disposition and cell response. In order to establish a proper correlation, some control over dendrimer surface deposition is desirable. Here, dendrimer nanopatterning has been employed to address arginine–glycine–aspartic acid (RGD) density effects on cell adhesion. Nanopatterned surfaces were fully characterized by atomic force microscopy (AFM), scanning tunneling microscopy (STM) and X-ray photoelectron spectroscopy (XPS), showing that tunable distributions of cell adhesive ligands on the surface are obtained as a function of the initial dendrimer bulk concentration. Cell experiments showed a clear correlation with dendrimer surface layout: Substrates presenting regions of high local ligand density resulted in a higher percentage of adhered cells and a higher degree of maturation of focal adhesions (FAs). Therefore, dendrimer nanopatterning is presented as a suitable and controlled approach to address the effect of local ligand density on cell response. Moreover, due to the easy modification of dendrimer peripheral groups, dendrimer nanopatterning can be further extended to other ECM ligands having density effects on cells.

Electronic Supplementary Material

Download File(s)
nr-7-3-399_ESM.pdf (659.6 KB)

References

1

Mager, D. M.; LaPointe, V.; Stevens, M. M. Exploring and exploiting chemistry at the cell surface. Nat. Chem. 2011, 3, 582–589.

2

Geiger, B.; Spatz, J. P.; Bershadsky, A. D. Environmental sensing through focal adhesions. Nat. Rev. Mol. Cell Biol. 2009, 10, 21–33.

3

Geiger, B.; Bershadsky, A.; Pankov, R.; Yamada, K. M. Transmembrane extracellular matrix–cytoskeleton crosstalk. Nat. Rev. Mol. Cell Biol. 2001, 2, 793–804.

4

Vogel, V.; Sheetz, M. Local force and geometry sensing regulate cell functions. Nat. Rev. Mol. Cell Biol. 2006, 7, 265–275.

5

Smith, M. L.; Gourdon, D.; Little, W. C.; Kubow, K. E.; Eguiluz, R. A.; Luna-Morris, S.; Vogel, V. Force-induced unfolding of fibronectin in the extracellular matrix of living cells. PLoS Biol. 2007, 5, 2243–2254.

6

Jiang, F.; Hörber, H.; Howard, J.; Müller, D. J. Assembly of collagen into microribbons: Effects of pH and electrolytes. J. Struct. Biol. 2004, 148, 268–278.

7

Abrams, G. A.; Goodman, S. L.; Nealey, P. F.; Franco, M.; Murphy, C. J. Nanoscale topography of the basement membrane underlying the corneal epithelium of the rhesus macaque. Cell Tissue Res. 2000, 299, 39–46.

8

Christman, K. L.; Enriquez-Rios, V. D.; Maynard, H. D. Nanopatterning proteins and peptides. Soft Matter 2006, 2, 928–939.

9

Falconnet, D.; Csucs, G.; Grandin, H. M.; Textor, M. Surface engineering approaches to micropattern surfaces for cell-based assays. Biomaterials 2006, 27, 3044–3063.

10

Arnold, M.; Schwieder, M.; Blümmel, J.; Cavalcanti-Adam, E. A.; López-Garcia, M.; Kessler, H.; Geiger, B.; Spatz, J. P. Cell interactions with hierarchically structured nano-patterned adhesive surface. Soft Matter 2009, 5, 72–77.

11

Malmström, J.; Christensen, B.; Jakobsen, H. P.; Lovmand, J.; Foldbjerg, R.; Sørensen, E. S.; Sutherland, D. S. Large area protein patterning reveals nanoscale control of focal adhesion development. Nano Lett. 2010, 10, 686–694.

12

Deeg, J. A.; Louban, I.; Aydin, D.; Selhuber-Unkel, C.; Kessler, H.; Spatz, J. P. Impact of local versus global ligand density on cellular adhesion. Nano Lett. 2011, 11, 1469–1476.

13

Rolland, O.; Turrin, C. O.; Caminade, A. M.; Majoral, J. P. Dendrimers and nanomedicine: Multivalency in action. New J. Chem. 2009, 33, 1809–1824.

14

Saovapakhiran, A.; D'Emanuele, A.; Attwood, D.; Penny, J. Surface modification of PAMAM dendrimers modulates the mechanism of cellular internalization. Bioconjug. Chem. 2009, 20, 693–701.

15

Albertazzi, L.; Fernandez-Villamarin, M.; Riguera, R.; Fernandez-Megia, E. Peripheral functionalization of dendrimers regulates internalization and intracelular trafficking in living cells. Bioconjug. Chem. 2012, 23, 1059–1068.

16

Mikhail, A. S.; Jones, K. S.; Sheardown, H. Dendrimer-grafted cell adhesion peptide-modified PDMS. Biotechnol. Prog. 2008, 24, 938–944.

17

Kino-oka, M.; Kim, J.; Kurisaka, K.; Kim, M. H. Preferential growth of skeletal myoblasts and fibroblasts in co-culture on a dendrimer-immobilized surface. J. Biosci. Bioeng. 2013, 115, 96–99.

18

Lomba, M.; Oriol, L.; Sánchez-Somolinos, C.; Grazú, V.; Moros, M.; Serrano, J. L.; Martínez De la Fuente, J. Cell adhesion on surface patterns generated by the photocrosslinking of hyperbranched polyesters with a trisdiazonium salt. React. Funct. Polym. 2013, 73, 499–507.

19

Kim, M. H.; Kino-oka, M.; Morinaga, Y.; Sawada, Y.; Kawase, M.; Yagi, K.; Taya, M. Morphological regulation and aggregate formation of rabbit chondrocytes on dendrimer-immobilized surfaces with D-glucose display. J. Biosci. Bioeng. 2009, 107, 196–205.

20

Kim, M. H.; Kino-oka, M.; Kawase, M.; Yagi, K.; Taya, M. Synergistic effect of D-glucose and epidermal growth factor display on dynamic behaviors of human epithelial cells. J. Biosci. Bioeng. 2007, 104, 428–431.

21

Maheshwari, G.; Brown, G.; Lauffenburger, D. A.; Wells, A.; Griffith, L. G. Cell adhesion and motility depend on nanoscale RGD clutering. J. Cell Sci. 2000, 113, 1677–1686.

22

Pericet-Camara, R.; Cahill, B. P.; Papastavrou, G.; Borkovec, M. Nano-patterning of solid substrates by adsorbed dendrimers. Chem. Commun. 2007, 3, 266–268.

23

Tokuhisa, H.; Zhao, M. Q.; Baker, L. A.; Phan, V. T.; Dermody, D. L.; Garcia, M. E.; Peez, R. F.; Crooks, R. M.; Mayer, T. M. Preparation and characterization of dendrimer monolayers and dendrimer-alkanethiol mixed monolayers adsorbed to gold. J. Am. Chem. Soc. 1998, 120, 4492–4501.

24

Pericet-Camara, R.; Papastavrou, G.; Borkovec, M. Atomic force microscopy study of the adsorption and electrostatic self-organization of poly(amidoamine) dendrimers on mica. Langmuir 2004, 20, 3264–3270.

25

Li, J.; Piehler, L. T.; Qin, D.; Baker, J. R.; Tomalia, D. A. Visualization and characterization of poly(amidoamine) dendrimers by atomic force microscopy. Langmuir 2000, 16, 5613–5616.

26

Mertz, L.; Hitz, J.; Hubler, U.; Weyermann, P.; Diederich, F.; Murer, P.; Seebach, D.; Widmer, I.; Stöhr, M.; Güntherodt, H. J., et al. STM investigation on single, physisorbed dendrimers. Single Mol. 2002, 5, 295–299.

27

Horcas, I.; Fernández, R.; Gómez-Rodríguez, J. M.; Colchero, J.; Gómez-Herrero, J.; Baro, A. M. WSXM: A software for scanning probe microscopy and a tool for nanotechnology. Rev. Sci. Instrum. 2007, 78, 13705–13713.

28

Prats-Alfonso, E.; García-Martín, F.; Bayo, N.; Cruz, L. J.; Pla-Roca, M.; Samitier, J.; Errachid, A.; Albericio, F. Facile solid-phase synthesis of biotinylated alkyl thiols. Tetrahedron 2006, 62, 6876–6881.

29

Boas, U.; Heegaard, P. M. Dendrimers in drug research. Chem. Soc. Rev. 2004, 33, 43–63.

30

Zhou, M.; Bentley, D.; Ghosh, I. Helical supramolecules and fibers utilizing leucine zipper-displaying dendrimers. J. Am. Chem. Soc. 2004, 126, 734–735.

31

Zhou, M.; Ghosh, I. Noncovalent multivalent assembly of Jun peptides on a leucine zipper dendrimer displaying Fos peptides. Org. Lett. 2004, 20, 3561–3564.

32

Huang, J. H.; Gräter, S. V.; Corbellini, F.; Rinck, S.; Bock, E.; Kemkemer, R.; Kessler, H.; Ding, J. D.; Spatz, J. P. Impact of order and disorder in RGD nanopatterns on cell adhesion. Nano Lett. 2009, 9, 1111–1116.

33

Xiong, J. P.; Stehle, T.; Zhang, R. G.; Joachimiak, A.; Frech, M.; Goodman, S. L.; Arnaout, M. A. Crystal structure of the extracellular segment of integrin αVβ3 in complex with an Arg-Gly-Asp ligand. Science 2002, 296, 151–155.

34

Arnold, M.; Cavalcanti-Adam, E. A.; Glass, R.; Blümmel, J.; Eck, W.; Kantlehner, M.; Kessler, H.; Spatz, J. P. Activation of integrin function by nanopatterned adhesive interfaces. ChemPhysChem. 2004, 5, 383–388.

35

Liu, L.; Chen, S.; Giachelli, C. M.; Ratner, B. D.; Jiang, S. Controlling osteopontin orientation on surfaces to modulate endothelial cell adhesion. J. Biomed. Mater. Res. A 2005, 74A, 23–31.

36

Tatkiewicz, W. I.; Seras-Franzoso, J.; García-Fruitós, E.; Vazquez, E.; Ventosa, N.; Peebo, K.; Ratera, I.; Villaverde, A.; Veciana, J. Two-dimensional microscale engineering of protein-based nanoparticles for cell guidance. ACS Nano 2013, 7, 4774–4784.

37

Lehnert, D.; Wehrle-Haller, B.; David, C.; Welland, U.; Ballestrem, C.; Imhol, B. A.; Bastmeyer, M. Cell behavior on micropatterned substrata: Limits of extracellular matrix geometry for spreading and adhesion. J. Cell Sci. 2004, 117, 41–52.

38

Schaller, M. D. Paxillin: A focal adhesion-associated adaptor protein. Oncogene 2001, 20, 6459–6472.

39

Cavalcanti-Adam, E. A.; Volberg, T.; Micoulet, A.; Kessler, H.; Geiger, B.; Spatz, J. P. Cell spreading and focal adhesion dynamics are regulated by spacing of integrin ligands. Biophys. J. 2007, 92, 2964–2974.

40

Irvine, D. J.; Hue, K. A.; Mayes, A. M.; Griffith, L. G. Simulations of cell-surface integrin binding to nanoscale-clustered adhesion ligands. Biophys. J. 2002, 82, 120–132.

41

Comisar, W. A.; Mooney, D. J.; Linderman, J. J. Integrin organization: Linking adhesion ligand nanopatterns with altered cell responses. J. Theor. Biol. 2011, 274, 120–130.

Nano Research
Pages 399-409
Cite this article:
Lagunas A, Castaño AG, Artés JM, et al. Large-scale dendrimer-based uneven nanopatterns for the study of local arginine–glycine–aspartic acid (RGD) density effects on cell adhesion. Nano Research, 2014, 7(3): 399-409. https://doi.org/10.1007/s12274-014-0406-2

590

Views

26

Crossref

N/A

Web of Science

26

Scopus

4

CSCD

Altmetrics

Received: 29 October 2013
Revised: 18 December 2013
Accepted: 22 December 2013
Published: 16 January 2014
© Tsinghua University Press and Springer-Verlag Berlin Heidelberg 2014
Return