AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Multifunctional organically modified graphene with super-hydrophobicity

Huawen HuChan C. K. AllanJianhua LiYeeyee KongXiaowen WangJohn H. Xin( )Hong Hu( )
Institute of Textiles and Clothing The Hong Kong Polytechnic UniversityHong Kong Special Administrative Region (SAR) 999077 China
Show Author Information

Graphical Abstract

Abstract

In order to bring graphene materials much closer to real world applications, it is imperative to have simple, efficient and eco-friendly ways to produce processable graphene derivatives. In this study, a hydrophilic low-temperature thermally functionalized graphene and its super-hydrophobic organically modified graphene derivative were fabricated. A unique structural topology was found and some of the oxygen functionalities were retained on the thermally functionalized graphene surfaces, which facilitated the subsequent highly effective organic modification reaction and led to the super-hydrophobic organically modified graphene with multifunctional applications in liquid marbles and polymer nanocomposites. The organic modification reaction also restored the graphenic conjugated structure of the thermally functionalized graphene, particularly for organic modifiers having longer alkyl chains, as confirmed by various characterization techniques such as electrical conductivity measurements, ultraviolet/visible spectroscopy and selected area electron diffraction. The free-standing soft liquid marble was fabricated by wrapping a water droplet with the super-hydrophobic organically modified graphene, and showed potential for use as a microreactor. As for the polymer nanocomposites, a strong interfacial adhesion is believed to exist between an organic polymer matrix and the modified graphene because of the organophilic coating formed on the graphene base, which resulted in large improvements in the thermal and mechanical properties of the polymer nanocomposites with the modified graphene, even at very low loading levels. A new avenue has therefore been opened up for large-scale production of processable graphene derivatives with various practicable applications.

Electronic Supplementary Material

Download File(s)
nr-7-3-418_ESM.pdf (1.1 MB)

References

1

Geim, A. K. Graphene: Status and prospects. Science 2009, 324, 1530–1534.

2

Zhang, Y. B.; Tan, Y. W.; Stormer, H. L.; Kim, P. Experimental observation of the quantum Hall effect and Berry's phase in graphene. Nature 2005, 438, 201–204.

3

Loh, K. P.; Bao, Q. L.; Ang, P. K.; Yang, J. X. The chemistry of graphene. J. Mater. Chem. 2010, 20, 2277–2289.

4

Staudenmaier, L. Verfahren zur darstellung der graphitsäure. Ber. Dtsch. Chem. Ges. 1898, 31, 1481–1487.

5

Brodie, B. C. Sur le poids atomique du graphite. Ann. Chim. Phys. 1860, 59, 466–472.

6

Hummers Jr, W. S.; Offeman, R. E. Preparation of graphitic oxide. J. Am. Chem. Soc. 1958, 80, 1339.

7

Stankovich, S.; Dikin, D. A.; Piner, R. D.; Kohlhaas, K. A.; Kleinhammes, A.; Jia, Y. Y.; Wu, Y.; Nguyen, S. T.; Ruoff, R. S. Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide. Carbon 2007, 45, 1558–1565.

8

Ding, Y. H.; Zhang, P.; Zhuo, Q.; Ren, H. M.; Yang, Z. M.; Jiang, Y. A green approach to the synthesis of reduced graphene oxide nanosheets under UV irradiation. Nanotechnology 2011, 22, 215601.

9

Schniepp, H. C.; Li, J. L.; McAllister, M. J.; Sai, H.; Herrera-Alonso, M.; Adamson, D. H.; Prud'homme, R. K.; Car, R.; Saville, D. A.; Aksay, I. A. Functionalized single graphene sheets derived from splitting graphite oxide. J. Phys. Chem. B 2006, 110, 8535–8539.

10

Deng, S. Y.; Lei, J. P.; Cheng, L. X.; Zhang, Y. Y.; Ju, H. X. Amplified electrochemiluminescence of quantum dots by electrochemically reduced graphene oxide for nanobiosensing of acetylcholine. Biosens. Bioelectron. 2011, 26, 4552–4558.

11

Yang, X. W.; Zhu, J. W.; Qiu, L.; Li, D. Bioinspired effective prevention of restacking in multilayered graphene films: Towards the next generation of high-performance supercapacitors. Adv. Mater. 2011, 23, 2833–2838.

12

Xu, Y. X.; Bai, H.; Lu, G. W.; Li, C.; Shi, G. Q. Flexible graphene films via the filtration of water-soluble noncovalent functionalized graphene sheets. J. Am. Chem. Soc. 2008, 130, 5856–5857.

13

Si, Y. C.; Samulski, E. T. Synthesis of water soluble graphene. Nano Lett. 2008, 8, 1679–1682.

14

Xu, Y. X.; Sheng, K. X.; Li, C.; Shi G. Q. Highly conductive chemically converted graphene prepared from mildly oxidized graphene oxide. J. Mater. Chem. 2011, 21, 7376–7380.

15

Li, D.; Müller, M. B.; Gilje, S.; Kaner, R. B.; Wallace, G. G. Processable aqueous dispersions of graphene nanosheets. Nat. Nanotechnol. 2008, 3, 101–105.

16

Zhu, Y. W.; Cai, W. W.; Piner, R. D.; Velamakanni, A.; Ruoff, R. S. Transparent self-assembled films of reduced graphene oxide platelets. Appl. Phys. Lett. 2009, 95, 103104.

17

Kudin, K. N.; Ozbas, B.; Schniepp, H. C.; Prud'Homme, R. K.; Aksay, I. A.; Car, R. Raman spectra of graphite oxide and functionalized graphene sheets. Nano Lett. 2008, 8, 36–41.

18

McAllister, M. J.; Li, J. L.; Adamson, D. H.; Schniepp, H. C.; Abdala, A. A.; Liu, J.; Herrera-Alonso, M.; Milius, D. L.; Car, R.; Prud'homme, R. K., et. al. Single sheet functionalized graphene by oxidation and thermal expansion of graphite. Chem. Mater. 2007, 19, 4396–4404.

19

Jing, X. J.; Qiu, Z. B. Effect of low thermally reduced graphene loadings on the crystallization kinetics and morphology of biodegradable poly (3-hydroxybutyrate). Ind. Eng. Chem. Res. 2012, 51, 13686–13691.

20

Tung, N. T.; Van Khai, T.; Jeon, M.; Lee, Y. J.; Chung, H.; Bang, J. H.; Sohn, D. Preparation and characterization of nanocomposite based on polyaniline and graphene nanosheets. Macromol. Res. 2011, 19, 203–208.

21

Yan, D.; Zhang, H. B.; Jia, Y.; Hu, J.; Qi, X. Y.; Zhang, Z.; Yu, Z. Z. Improved electrical conductivity of polyamide 12/graphene nanocomposites with maleated polyethylene-octene rubber prepared by melt compounding. ACS Appl. Mater. Interfaces 2012, 4, 4740–4745.

22

Roy-Mayhew, J. D.; Bozym, D. J.; Punckt, C.; Aksay, I. A. Functionalized graphene as a catalytic counter electrode in dye-sensitized solar cells. ACS Nano 2010, 4, 6203–6211.

23

Wang, G. X.; Shen, X. P.; Wang, B.; Yao, J.; Park, J. Synthesis and characterisation of hydrophilic and organophilic graphene nanosheets. Carbon 2009, 47, 1359–1364.

24

Park, S. J.; An, J.; Jung, I.; Piner, R. D.; An, S. J.; Li, X. S.; Velamakanni, A.; Ruoff, R. S. Colloidal suspensions of highly reduced graphene oxide in a wide variety of organic solvents. Nano Lett. 2009, 9, 1593–1597.

25

Hu, H.; Wang, X. B.; Wang, J. C.; Liu, F. M.; Zhang, M.; Xu, C. H. Microwave-assisted covalent modification of graphene nanosheets with chitosan and its electrorheological characteristics. Appl. Surf. Sci. 2011, 257, 2637–2642.

26

Cao, Y. W.; Feng, J. C.; Wu, P. Y. Alkyl-functionalized graphene nanosheets with improved lipophilicity. Carbon 2010, 48, 1683–1685.

27

Lin, Z. Y.; Liu, Y.; Wong, C. P. Facile fabrication of superhydrophobic octadecylamine-functionalized graphite oxide film. Langmuir 2010, 26, 16110–16114.

28

Zhang, S. P.; Song, H. O. Supramolecular graphene oxide-alkylamine hybrid materials: Variation of dispersibility and improvement of thermal stability. New J. Chem. 2012, 36, 1733–1738.

29

Shanmugharaj, A. M.; Yoon, J. H.; Yang, W. J.; Ryu, S. H. Synthesis, characterization and surface wettability properties of amine functionalized graphene oxide films with varying amine chain lengths. J. Colloid Interf. Sci. 2013, 401, 148–154.

30

Li, W. J.; Tang, X. Z.; Zhang, H. B.; Jiang, Z. G.; Yu, Z. Z.; Du, X. S.; Mai, Y. W. Simultaneous surface functionalization and reduction of graphene oxide with octadecylamine for electrically conductive polystyrene composites. Carbon 2011, 49, 4724–4730.

31

Nethravathi, C.; Rajamathi, M. Chemically modified graphene sheets produced by the solvothermal reduction of colloidal dispersions of graphite oxide. Carbon 2008, 46, 1994–1998.

32

Matsuo, Y.; Higashika, S.; Kimura, K.; Miyamoto, Y.; Fukutsuka, T.; Sugie, Y. Synthesis of polyaniline-intercalated layered materials via exchange reaction. J. Mater. Chem. 2002, 12, 1592–1596.

33

Aussillous, P.; Quéré, D. Liquid marbles. Nature 2001, 411, 924–927.

34

Aussillous, P.; Quéré, D. Properties of liquid marbles. Proc. R. Soc. A 2006, 462, 973–999.

35

Xue, Y. H.; Liu, Y.; Lu, F.; Qu, J.; Chen, H.; Dai, L. M. Functionalization of graphene oxide with polyhedral oligomeric silsesquioxane (POSS) for multifunctional applications. J. Phys. Chem. Lett. 2012, 3, 1607–1612.

36

Jeon, I. Y.; Shin, Y. R.; Sohn, G. J.; Choi, H. J.; Bae, S. Y.; Mahmood, J.; Jung, S. M.; Seo, J. M.; Kim, M. J.; Chang, D. W., et al. Edge-carboxylated graphene nanosheets via ball milling. Proc. Natl. Acad. Sci. U.S. A 2012, 109, 5588–5593.

37

Chen, C.; Long, M.; Xia, M.; Zhang, C. H.; Cai, W. M. Reduction of graphene oxide by an in-situ photoelectrochemical method in a dye-sensitized solar cell assembly. Nanoscale Res. Lett. 2012, 7, 1–5.

38

Villar-Rodil, S.; Paredes, J. I.; Martínez-Alonso, A.; Tascón, J. M. D. Preparation of graphene dispersions and graphene-polymer composites in organic media. J. Mater. Chem. 2009, 19, 3591–3593.

39

Hu, H. W.; Chen, G. H.; Fang, M.; Zhao, W. F. Modification of graphite oxide nanoparticles prepared via electrochemically oxidizing method. Synth. Met. 2009, 159, 1505–1507.

40

Hu, H. W.; Xin, J. H.; Hu, H. Highly efficient graphene-based ternary composite catalyst with polydopamine layer and copper nanoparticles. ChemPlusChem 2013, 78, 1483–1490.

41

Rani, J. R.; Lim, J.; Oh, J.; Kim, D.; Lee, D.; Kim, J. W.; Shin, H. S.; Kim, J. H.; Jun, S. C. Substrate and buffer layer effect on the structural and optical properties of graphene oxide thin films. RSC Adv. 2013, 3, 5926–5936.

42

Mai, Y. J.; Wang, X. L.; Xiang, J. Y.; Qiao, Y. Q.; Zhang, D.; Gu, C. D.; Tu, J. P. CuO/graphene composite as anode materials for lithium-ion batteries. Electrochim. Acta 2011, 56, 2306–2311.

43

Qi, Y.; Zhang, H.; Du, N.; Yang, D. R. Highly loaded CoO/graphene nanocomposites as lithium-ion anodes with superior reversible capacity. J. Mater. Chem. A 2013, 1, 2337–2342.

44

Zhang, J. L.; Yang, H. J.; Shen, G. X.; Cheng, P.; Zhang, J. Y.; Guo, S. W. Reduction of graphene oxide via L-ascorbic acid. Chem. Commun. 2010, 46, 1112–1114.

45

Sun, X. M.; Liu, Z.; Welsher, K.; Robinson, J. T.; Goodwin, A.; Zaric, S.; Dai. H. J. Nano-graphene oxide for cellular imaging and drug delivery. Nano Res. 2008, 1, 203–212.

46

Liu, N.; Pan, Z. H.; Fu, L.; Zhang, C. H.; Dai, B. Y.; Liu, Z. F. The origin of wrinkles on transferred graphene. Nano Res. 2011, 4, 996–1004.

47

Zhang, H. J.; Xu, P. P.; Du, G. D.; Chen, Z. W.; Oh, K.; Pan, D. Y.; Jiao, Z. A facile one-step synthesis of TiO2/graphene composites for photodegradation of methyl orange. Nano Res. 2011, 4, 274–283.

48

Shen, L. F.; Yuan, C. Z.; Luo, H. J.; Zhang, X. G.; Yang, S. D.; Lu, X. J. In situ synthesis of high-loading Li4Ti5O12–graphene hybrid nanostructures for high rate lithium ion batteries. Nanoscale 2011, 3, 572–574.

49

Mattson, E. C.; Cui, S. M.; Schofield, M. A.; Lu, G. H.; Pu, H.; Weinert, M. T.; Chen, J. H.; Hirschmugl, C. J.; Gajdardziska-Josifovska, M. Real-time observations of structural ordering in graphene oxide during thermal reduction in vacuum. Microsc. Microanal. 2011, 17, 1500–1501.

50

Mattson, E. C.; Cui, S.; Mao, S.; Lu, G. H.; Chen, J.; Hirschmugl, C. J.; Gajdardziska-Josifovska, M. Structure of graphene oxide-tin oxide hybrid nanomaterials for gas sensors. Microsc. Microanal. 2010, 16, 1708–1709.

51

Kim, H.; Kim, S. W.; Park, Y. U.; Gwon, H.; Seo, D. H.; Kim, Y.; Kang, K. SnO2/graphene composite with high lithium storage capability for lithium rechargeable batteries. Nano Res. 2010, 3, 813–821.

Nano Research
Pages 418-433
Cite this article:
Hu H, Allan CCK, Li J, et al. Multifunctional organically modified graphene with super-hydrophobicity. Nano Research, 2014, 7(3): 418-433. https://doi.org/10.1007/s12274-014-0408-0

627

Views

64

Crossref

N/A

Web of Science

66

Scopus

2

CSCD

Altmetrics

Received: 15 November 2013
Revised: 23 December 2013
Accepted: 01 January 2014
Published: 18 February 2014
© Tsinghua University Press and Springer-Verlag Berlin Heidelberg 2014
Return