Discover the SciOpen Platform and Achieve Your Research Goals with Ease.
Search articles, authors, keywords, DOl and etc.
We report a novel chemical vapor deposition (CVD) based strategy to synthesize carbon-coated Fe2O3 nanoparticles dispersed on graphene sheets (Fe2O3@C@G). Graphene sheets with high surface area and aspect ratio are chosen as space restrictor to prevent the sintering and aggregation of nanoparticles during high temperature treatments (800 ℃). In the resulting nanocomposite, each individual Fe2O3 nanoparticle (5 to 20 nm in diameter) is uniformly coated with a continuous and thin (two to five layers) graphitic carbon shell. Further, the core-shell nanoparticles are evenly distributed on graphene sheets. When used as anode materials for lithium ion batteries, the conductive-additive-free Fe2O3@C@G electrode shows outstanding Li+ storage properties with large reversible specific capacity (864 mAh/g after 100 cycles), excellent cyclic stability (120% retention after 100 cycles at 100 mA/g), high Coulombic efficiency (~99%), and good rate capability.
Armand, M.; Tarascon, J. M. Building better batteries. Nature 2008, 451, 652-657.
Scrosati, B. Challenge of portable power. Nature 1995, 373, 557-558.
Reddy, M. V.; Yu, T.; Sow, C. H.; Shen, Z. X.; Lim, C. T.; Subba Rao, G. V.; Chowdari, B. V. R. α-Fe2O3 nanoflakes as an anode material for Li-ion batteries. Adv. Funct. Mater. 2007, 17, 2792-2799.
Jia, X.; Chen, Z.; Cui, X.; Peng, Y.; Wang, X.; Wang, G.; Wei, F.; Lu, Y. Building robust architectures of carbon and metal oxide nanocrystals toward high-performance anodes for lithium-ion batteries. ACS Nano 2012, 6, 9911-9919.
Poizot, P.; Laruelle, S.; Grugeon, S.; Dupont, L.; Tarascon, J. M. Nano-sized transition-metal oxides as negative-electrode materials for lithium-ion batteries. Nature 2000, 407, 496-499.
Peng, C.; Chen, B.; Qin, Y.; Yang, S.; Li, C.; Zuo, Y.; Liu, S.; Yang, J. Facile ultrasonic synthesis of CoO quantum dot/graphene nanosheet composites with high lithium storage capacity. ACS Nano 2012, 6, 1074-1081.
Yu, A.; Park, H. W.; Davies, A.; Higgins, D. C.; Chen, Z.; Xiao, X. Free-standing layer-by-layer hybrid thin film of graphene-MnO2 nanotube as anode for lithium ion batteries. J. Phys. Chem. Lett. 2011, 2, 1855-1860.
Needham, S. A.; Wang, G. X.; Liu, H. K. Synthesis of NiO nanotubes for use as negative electrodes in lithium ion batteries. J. Power Sources 2006, 159, 254-257.
Zhu, X.; Zhu, Y.; Murali, S.; Stoller, M. D.; Ruoff, R. S. Nanostructured reduced graphene oxide/Fe2O3 composite as a high-performance anode material for lithium ion batteries. ACS Nano 2011, 5, 3333-3338.
Xu, X.; Cao, R.; Jeong, S.; Cho, J. Spindle-like mesoporous α-Fe2O3 anode material prepared from MOF template for high-rate lithium batteries. Nano Lett. 2012, 12, 4988-4991.
Han, F.; Li, D.; Li, W.; Lei, C.; Sun, Q.; Lu, A. Nanoengineered polypyrrole-coated Fe2O3@C multifunctional composites with an improved cycle stability as lithium-ion anodes. Adv. Funct. Mater. 2012, 23, 1692-1697.
Yuan, S. M.; Li, J. X.; Yang, L. T.; Su, L. W.; Liu, L.; Zhou, Z. Preparation and lithium storage performances of mesoporous Fe3O4@C microcapsules. ACS Appl. Mater. Inter. 2011, 3, 705-709.
Yu, W.; Hou, P.; Zhang, L.; Li, F.; Liu, C.; Cheng, H. Preparation and electrochemical property of Fe2O3 nanoparticles-filled carbon nanotubes. Chem. Commun. 2010, 46, 8576-8578.
Zhang, W.; Wu, X.; Hu, J.; Guo, Y.; Wan, L. Carbon coated Fe3O4 nanospindles as a superior anode material for lithium-ion batteries. Adv. Funct. Mater. 2008, 18, 3941-3946.
Arico, A. S.; Bruce, P.; Scrosati, B.; Tarascon, J. M.; Van Schalkwijk, W. Nanostructured materials for advanced energy conversion and storage devices. Nat. Mater. 2005, 4, 366-377.
Poizot, P.; Laruelle, S.; Grugeon, S.; Tarascon, J. M. Rationalization of the low-potential reactivity of 3d-metal- based inorganic compounds toward Li. J. Electrochem. Soc. 2002, 149, A1212-1217.
Arora, P.; White, R. E.; Doyle, M. Capacity fade mechanisms and side reactions in lithium-ion batteries. J. Electrochem. Soc. 1998, 145, 3647-3667.
Inagaki, M. Carbon coating for enhancing the functionalities of materials. Carbon 2012, 50, 3247-3266.
Yang, S.; Sun, Y.; Chen, L.; Hernandez, Y.; Feng, X.; Müllen, K. Porous iron oxide ribbons grown on graphene for high- performance lithium storage. Sci. Rep. 2012, 2, 427-433.
Li, H.; Zhou, H. Enhancing the performances of Li-ion batteries by carbon-coating: Present and future. Chem. Commun. 2012, 48, 1201-1217.
Li, B.; Cao, H.; Shao, J.; Qu, M. Enhanced anode performances of the Fe3O4-carbon-rGO three dimensional composite in lithium ion batteries. Chem. Commun. 2011, 47, 10374-10376.
Liu, H.; Wang, G.; Wang, J.; Wexler, D. Magnetite/carbon core-shell nanorods as anode materials for lithium-ion batteries. Electrochem. Commun. 2008, 10, 1879-1882.
Muraliganth, T.; Vadivel Murugan, A.; Manthiram, A. Facile synthesis of carbon-decorated single-crystalline Fe3O4 nanowires and their application as high performance anode in lithium ion batteries. Chem. Commun. 2009, 7360-7362.
Lu, A. H.; Li, W. C.; Salabas, E. L.; Spliethoff, B.; Schüth, F. Low temperature catalytic pyrolysis for the synthesis of high surface area, nanostructured graphitic carbon. Chem. Mater. 2006, 18, 2086-2094.
Wilcox, J. D.; Doeff, M. M.; Marcinek, M.; Kostecki, R. Factors influencing the quality of carbon coatings on LiFePO4. J. Electrochem. Soc. 2007, 154, A389-395.
L'vov, B. V. Mechanism of carbothermal reduction of iron, cobalt, nickel and copper oxides. Thermochim. Acta 2000, 360, 109-120.
Li, Z.; Sun, Q.; Gao, M. Preparation of water-soluble magnetite nanocrystals from hydrated ferric salts in 2-pyrrolidone: Mechanism leading to Fe3O4. Angew. Chem. Int. Edit. 2005, 44, 123-126.
Martha, S. K.; Grinblat, J.; Haik, O.; Zinigrad, E.; Drezen, T.; Miners, J. H.; Exnar, I.; Kay, A.; Markovsky, B.; Aurbach, D. LiMn0.8Fe0.2PO4: An advanced cathode material for rechargeable lithium batteries. Angew. Chem. Int. Edit. 2009, 48, 8559-8563.
Zhao, L.; Hu, Y. S.; Li, H.; Wang, Z.; Chen, L. Porous Li4Ti5O12 coated with N-doped carbon from ionic liquids for Li-ion batteries. Adv. Mater. 2011, 23, 1385-1388.
Zhang, W. M.; Hu, J. S.; Guo, Y. G.; Zheng, S. F.; Zhong, L. S.; Song, W. G.; Wan, L. J. Tin-nanoparticles encapsulated in elastic hollow carbon spheres for high-performance anode material in lithium-ion batteries. Adv. Mater. 2008, 20, 1160-1165.
Lee, K. T.; Jung, Y. S.; Oh, S. M. Synthesis of tin- encapsulated spherical hollow carbon for anode material in lithium secondary batteries. J. Am. Chem. Soc. 2003, 125, 5652-5653.
Zhou, J.; Song, H.; Chen, X.; Zhi, L.; Yang, S.; Huo, J.; Yang, W. Carbon-encapsulated metal oxide hollow nanoparticles and metal oxide hollow nanoparticles: A general synthesis strategy and its application to lithium-ion batteries. Chem. Mater. 2009, 21, 2935-2940.
Yu, W. J.; Hou, P. X.; Li, F.; Liu, C. Improved electrochemical performance of Fe2O3 nanoparticles confined in carbon nanotubes. J. Mater. Chem. 2012, 22, 13756-13763.
Fujii, T.; de Groot, F. M. F.; Sawatzky, G. A.; Voogt, F. C.; Hibma, T.; Okada, K. In situ XPS analysis of various iron oxide films gown by NO2-assisted molecular-beam epitaxy. Phys. Rev. B 1999, 59, 3195-3202.
Zhou, G.; Wang, D. W.; Li, F.; Zhang, L.; Li, N.; Wu, Z. S.; Wen, L.; Lu, G. Q.; Cheng, H. M. Graphene-wrapped Fe3O4 anode material with improved reversible capacity and cyclic stability for lithium ion batteries. Chem. Mater. 2010, 22, 5306-5313.
Zhou, W.; Lin, L.; Wang, W.; Zhang, L.; Wu, Q.; Li, J.; Guo, L. Hierarchial mesoporous hematite with "electron-transport channels" and its improved performances in photocatalysis and lithium ion batteries. J. Phys. Chem. C 2011, 115, 7126-7133.
Sun, B.; Horvat, J.; Kim, H. S.; Kim, W. S.; Ahn, J.; Wang, G. Synthesis of mesoporous α-Fe2O3 nanostructures for highly sensitive gas sensors and high capacity anode materials in lithium ion batteries. J. Phys. Chem. C 2010, 114, 18753-18761.
Ma, Y.; Ji, G.; Lee, J. Y. Synthesis of mixed-conducting carbon coated porous γ-Fe2O3 microparticles and their properties for reversible lithiumi storage. J. Mater. Chem. 2011, 21, 13009-13014.
Chou, S. L.; Wang, J. Z.; Wexler, D.; Konstantinov, K.; Zhong, C.; Liu, H. K.; Dou, S. X. High-surface-area γ-Fe2O3/carbon nanocomposite: One-step synthesis and its highly reversible and enhanced high-rate lithium storage properties. J. Mater. Chem. 2010, 20, 2092-2098.
Wang, Z.; Luan, D.; Madhavi, S.; Li, C. M.; Lou, X. W. γ-Fe2O3 nanotubes with superior lithium storage capability. Chem. Commun. 2011, 47, 8061-8063.
Wang, B.; Chen, J. S.; Wu, H. B.; Wang, Z.; Lou, X. W. Quasiemulsion-templated formation of α-Fe2O3 hollow spheres with enhanced lithium storage properties. J. Am. Chem. Soc. 2011, 133, 17146-17148.
Wang, Z.; Luan, D.; Madhavi, S.; Hu, Y.; Lou, X. W. Assembling carbon-coated γ-Fe2O3 hollow nanohorns on the CNT backbone for superior lithium storage capability. Energ. Environ. Sci. 2012, 5, 5252-5256.
Kang, E.; Jung, Y. S.; Cavanagh, A. S.; Kim, G. H.; George, S. M.; Dillon, A. C.; Kim, J. K.; Lee, J. Fe3O4 nanoparticles confined in mesocellular carbon foam for high performance anode materials for lithium-ion batteries. Adv. Funct. Mater. 2011, 21, 2430-2438.
Zhou, G.; Wang, D. W.; Hou, P. X.; Li, W.; Li, N.; Liu, C.; Li, F.; Cheng, H. M. A nanosized Fe2O3 decorated single- walled carbon nanotube membrane as a high-performance flexible anode for lithium ion batteries. J. Mater. Chem. 2012, 22, 17942-17946.
Han, F.; Li, W. C.; Li, M. R.; Lu, A. H. Fabrication of superior-performance SnO2@C composites for lithium-ion anodes using tubular mesoporous carbon with thin carbon walls and high pore volume. J. Mater. Chem. 2012, 22, 9645-9651.