AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Chemical vapor deposition growth of monolayer MoSe2 nanosheets

Jonathan C. Shaw1,§Hailong Zhou1,§Yu Chen2Nathan O. Weiss2Yuan Liu2Yu Huang2,3Xiangfeng Duan1,3( )
Department of Chemistry and BiochemistryUniversity of CaliforniaLos AngelesCA90095USA
Department of Materials Science and EngineeringUniversity of CaliforniaLos AngelesCA90095USA
California NanoSystems InstituteUniversity of CaliforniaLos AngelesCA90095USA

§ These authors made equal contribution to this work

Show Author Information

Graphical Abstract

Abstract

The synthesis of two-dimensional (2D) layered materials with controllable thickness is of considerable interest for diverse applications. Here we report the first chemical vapor deposition growth of single- and few-layer MoSe2 nanosheets. By using Se and MoO3 as the chemical vapor supply, we demonstrate that highly crystalline MoSe2 can be directly grown on the 300 nm SiO2/Si substrates to form optically distinguishable single- and multi-layer nanosheets, typically in triangular shaped domains with edge lengths around 30 μm, which can merge into continuous thin films upon further growth. Micro-Raman spectroscopy and imaging was used to probe the thickness-dependent vibrational properties. Photoluminescence spectroscopy demonstrates that MoSe2 monolayers exhibit strong near band edge emission at 1.55 eV, while bilayers or multi-layers exhibit much weaker emission, indicating of the transition to a direct band gap semiconductor as the thickness is reduced to a monolayer.

Electronic Supplementary Material

Download File(s)
12274_2014_417_MOESM1_ESM.pdf (692.7 KB)

References

1

Frindt, R. F.; Yoffe, A. D. Physical properties of layer structures-Optical properties and photoconductivity of thin crystals of molybdenum disulfide. Proc. R. Soc. London A 1969, 273, 69-83.

2

Margulis, L.; Salitra, G.; Talianker, M.; Tenne, R.; Talianker. M. Nested fullerene-like structures. Nature 1993, 365, 113-114.

3

Prins, R.; De Beer, V. H. J.; Somorjai, G. A. Structure and function of the catalyst and the promoter in Co-Mo hydrodesulfurization catalysis. Catal. Rev. Sci. Eng. 1989, 31, 1-41.

4

Karunadasa, H. I.; Montalvo, E.; Sun, Y. J.; Majda, M.; Long, J. R.; Chang, C. J. A Molecular MoS2 edge site mimic for catalytic hydrogen generation. Science 2012, 335, 698-702.

5

Kim, Y.; Huang, J. -L.; Lieber, C. M. Characterization of nanometer scale wear and oxidation of transition-metal dichalcogenide lubrications by atomic force microscopy. Appl. Phys. Lett. 1991, 59, 3404-3406.

6

Li, Y.; Wang, H. L.; Xie, L. M.; Liang, Y.; Hong, G. S.; Dai, H. J. MoS2 nanoparticles grown on graphene: An advanced catalyst for the hydrogen evolution reaction. J. Am. Chem. Soc. 2011, 133, 7296-7299.

7

Huang, X.; Zeng, Z. Y.; Zhang, H. Metal dichalcogenide nanosheets: Preparation, properties and applications. Chem. Soc. Rev. 2013, 42, 1934-1946.

8

Kuc, A.; Zibouche, N.; Heine, T. Influence of quantum confinement on the electornic structure of the transition metal sulfide TS2. Phys. Rev. B 2011, 83, 245213.

9

Coehoorn, R.; Haas, C.; Dijkstra, J.; Flipse, C. J. F.; de Groot, R. A.; Wold. A. Electronic structure of MoSe2, MoS2 and WSe2. I. Band structure calculations and photoelectron spectroscopy. Phys. Rev. B 1987, 35, 6195-6202.

10

Liu, L.; Kumar, S. B.; Ouyang, Y.; Jing. G. Performance limits of monolayer transition metal dichalcogenide transistiors. IEEE Trans. Electron. Dev. 2011, 58, 3042-3047.

11

Radisavljevic, B.; Radenovic, A.; Brivio, J.; Giacometti, V.; Kis, A. Single-layer MoS2 transistors. Nat. Nanotechnol. 2011, 6, 147-150.

12

Sundaram, R. S.; Engel, M.; Lombardo, A.; Krupke, R.; Ferrari, A. C.; Avouris, P.; Steiner M. Electroluminescence in single-layer MoS2. Nano Lett. 2013, 13, 1416-1421.

13

Perkins, F. K.; Friedman, A. L.; Cobas, E.; Campbell, P. M.; Jernigan, G. G.; Jonker, B. T. Chemical vapor sensing with monolayer MoS2. Nano Lett. 2013, 13, 668-673.

14

Yin, Z. Y.; Li, H.; Li, H.; Jiang, L.; Shi, Y. M.; Sun, Y. H.; Lu, G.; Zhang, Q.; Chen, X. D.; Zhang, H. Single-layer MoS2 phototransistors. ACS Nano 2012, 6, 74-80.

15

He, Q. Y.; Zeng, Z. Y.; Yin, Z. Y.; Li, H.; Wu, S. X.; Huang, X.; Zhang, H. Fabrication of flexible MoS2 thin-film transistor arrays for practical gas-sensing applications. Small 2012, 8, 2994-2999.

16

Li, H.; Yin, Z. Y.; He, Q. Y.; Li, H.; Huang, X.; Lu, G.; Fam, D. W. H.; Tok, A. I. Y.; Zhang, Q.; Zhang, H. Fabrication of single- and multilayer MoS2 film-based field-effect transistors for sensing NO at room temperature. Small 2012, 8, 63-67.

17

Zhu, C. F.; Zeng, Z. Y.; Li, H.; Li, F.; Fan, C. H.; Zhang, H. Single-layer MoS2-based nanoprobes for homogeneous detection of biomolecules. J. Am. Chem. Soc. 2013, 135, 5998-6001.

18

Wu, J.; Li, H.; Yin, Z. Y.; Li, H.; Liu, J.; Cao, X.; Zhang, Q.; Zhang, H. Layer thinning and etching of mechanically exfoliated MoS2 nanosheets by thermal annealing in air. Small 2013, 9, 3314-3319.

19

Lee, Y. -H.; Zhang, X. -Q.; Zhang, W. J.; Chang, M. -T. M.; Lin, C. -T.; Chang, K. D.; Yu, Y. -C.; Wang, J. T. -W.; Chang, C. -S.; Li, L. -J.; et al. Synthesis of large-area MoS2 atomic layers with chemical vapor deposition. Adv. Mater. 2012, 24, 2320-2325.

20

Zhan, Y. J.; Liu, Z.; Najmaei, S.; Ajayan, P. M.; Lou, J. Large area vapor phase growth and characterization of MoS2 atomic layers on SiO2 substrate. Small 2012, 8, 966-971.

21

Liu, K. -K.; Zhang, W. J.; Lee, Y. -H.; Lin, Y. -C.; Chang, M. -T.; Su, C. -Y.; Chang, C. -S.; Li, H.; Shi, Y. M.; Zhang, H.; et al. Growth of large-area and highly crystalline MoS2 thin layers on insulating substrates. Nano Lett. 2012, 12, 1538-1544.

22

Lee, Y. -H.; Yu, L.; Wang, H.; Fang W. J.; Ling, X.; Shi, Y. M.; Lin, C. -T.; Huang, J. -K.; Chang, M. -T.; Chang, C. -S.; et al. Synthesis and transfer of single-layer transition metal disulfides on diverse surfaces. Nano Lett. 2013, 13, 1852-1857.

23

Van der Zande, A. M.; Huang, P. Y.; Chenet, D. A.; Berkelbach, T. C.; You, Y.; Lee, G. -H.; Heinz, T. F.; Reichman, D. R.; Muller, D. A.; Hone, J. C. Grains and grain boundaries in highly crystalline monolayer molybdenum disulphide. Nat. Mater. 2013, 12, 554-561.

24

Najmaei, S.; Liu, Z.; Zhou, W.; Zou X. L.; Shi, G.; Lei, S. D.; Yakobson, B. I.; Idrobo, J. C.; Ajayan, P. M.; Lou, J. Vapour phase growth and grain boundary structure of molybdenum disulphide atomic layers. Nat. Mater. 2013, 12, 754-759.

25

Geim, A. K.; Grigorieva, I. V. Van der Waals heterostructures. Nature 2013, 449, 419-425.

26

Pouzet, J.; Bernede J. C. MoSe2 thin-films synthesized by solid-state reactions between Mo and Se thin-films. Revue Phys. Appl. 1990, 25, 807-815.

27

Peng, Y.; Meng, Z. Y.; Zhong, C.; Lu, J.; Yu, W. C.; Jia, Y. B.; Qian, Y. T. Hydrothermal synthesis and characterization of single-molecular-layer MoS2 and MoSe2. Chem. Lett. 2001, 30, 772-773.

28

Matte, H. S. S. R.; Plowman, B.; Datta, R.; Rao, C. N. R. Graphene analogues of layered metal selenides. Dalton Trans. 2011, 40, 10322-10325.

29

Kong, D. S.; Wang, H. T.; Cha, J. J.; Pasta, M.; Koski, K. J.; Yao, J.; Cui, Y. Synthesis of MoS2 and MoSe2 films with vertically aligned layers. Nano Lett. 2013, 13 1341-1347.

30

Jäger-Waldau, A.; Lux-Steiner, M.; Jäger-Waldu, R.; Burkhardt, R.; Bucher, E. Composition and morphology of MoSe2 thin films. Thin Solid Films 1990, 189, 339-345.

31

Boscher, N. D.; Carmalt, C. J.; Palgrave, R. G.; Gil-Tomas, J. J.; Parkin, I. P. Atmospheric pressure CVD of molybdenum diselenide films on glass. Chem. Vapor. Depos. 2006, 12, 692-698.

32

Tongay, S.; Zhou, J.; Ataca, C.; Lo, K.; Matthews, T. S.; Li, J. B.; Grossman, J. C.; Wu, J. Q. Thermally driven crossover from indirect toward direct bandgap in 2D semiconductors: MoSe2 versus MoS2. Nano Lett. 2012, 12, 5576-5580.

33

Larentis, S.; Fallahazad, B.; Tutuc, E. Field-effect transistors and intrinsic mobility in ultra-thin MoSe2 layers. Appl. Phys. Lett. 2012, 101, 223104.

34

Kang, J.; Tongay, S.; Zhou, J.; Li, J. B.; Wu, J. Q. Band offsets and heterostructures of two-dimensional semiconductors. Appl. Phys. Lett. 2013, 102, 012111.

35

Yu, W. J.; Liu, Y.; Zhou, H.; Yin, A.; Li, Z.; Huang, Y.; Duan, X. Highly efficient gate-tunable photocurrent generation in vertical heterostructures of layered materials. Nat. Nanotechnol. 2013, 8, 952-958.

36

Yu, W. J.; Li, Z.; Zhou, H.; Chen, Y.; Wang, Y.; Huang, Y.; Duan, X. Vertically stacked multi-heterostructures of layered materials for logic transistors and complementary inverters. Nat. Mater. 2012, 12, 246-252.

37

Zhou, H.; Yu, W. J.; Liu, L.; Cheng, R.; Chen, Y.; Huang, X.; Liu, Y.; Wang, Y.; Huang, Y.; Duan, X. Chemical vapour deposition growth of large single crystals of monolayer and bilayer graphene. Nat. Commun. 2013, 4, 2096.

38

Li, X. S.; Magnuson, C. W.; Venugopal, A.; Tromp, R. M.; Hannon J. B.; Vogel, E. M.; Colombo, L.; Ruoff, R. S. Large-area graphene single crystals grown by low-pressure chemical vapor deposition of methane on copper. J. Am. Chem. Soc. 2011, 133, 2816-2819.

39

Peng, H.; Dang, W.; Cao, J.; Chen, Y. L.; Wu, D.; Zheng, W. S.; Li, H.; Shen, Z. -X.; Liu, Z. F. Topological insulator nanostructures for near-infrared transparent flexible electrodes. Nat. Chem. 2012, 4, 281-286.

40

Zhang, Y.; Zhang, Y. F.; Ji, Q. Q.; Ju, J.; Yuan, H. T.; Shi, J. P.; Gao, T.; Ma, D. L.; Liu, M. X.; Chen, Y. B.; et al. Controlled growth of high-quality monolayer WS2 layers on sapphire and imaging its grain boundary. ACS Nano 2013, 7, 8963-8971.

41
Huang, J. K.; Pu, J.; Chuu, C. P.; Hsu, C. L.; Chiu, M. H.; Juang, Z. Y.; Chang, Y. H.; Chang, W. H.; Iwasa, Y.; Chou M. Y. Large-area and highly crystalline WSe2 monolayers: From synthesis to device applications. Preprint at http://arxiv.org/abs/1304.7365.
42

Li, X. L.; Li, Y. D. Formation of MoS2 inorganic fullerenes (IFs) by the reaction of MoO3 nanobelts and S. Chem. Eur. J. 2003, 9, 2726-2731.

43

Tonndorf, P.; Schmidt, R.; Böttger, P.; Zhang, X.; Börner, J.; Liebig, A.; Albrecht, M.; Kloc, C.; Gordan, O.; Zhan, D. R.; et al. Photoluminescence emission and Raman response of monolayer MoS2, MoSe2, and WSe2. Opt. Express 2013, 4, 4908-4916.

44

James, P. B.; Lavik, M. T. The crystal structure of MoSe2. Acta. Cryst. 1963, 16, 1183.

45

Loginova, E.; Bartelt, N. C.; Feibelman, P. J.; McCarty, K. F. Evidence for graphene growth by C cluster attachment. New J. Phys. 2008, 10, 093026.

46

Zhou, H. Q.; Yu, F.; Liu, Y. Y.; Zou, X. L.; Cong, C. X.; Qiu, C. Y.; Yu, T.; Yan, Z.; Shen, X. N.; Sun, L. F.; et al. Thickness-dependent patterning of MoS2 sheets with well-oriented triangular pits by heating in air. Nano Res. 2013, 6, 703-711.

47

Liang, T.; Sawyer, W. G.; Perry, S. S.; Sinnott, S. B.; Phillpot, S. R. First-principles determination of static potential energy surfaces for atomic friction in MoS2 and MoO3. Phys. Rev. B 2008, 77, 104105.

48

Horzum, S.; Sahin, H.; Cahangirov, S.; Cudazzo, P.; Rubio, A.; Serin, T.; Peeters, F. M. Phonon softening and direct to indirect band gap crossover in strained single-layer MoSe2. Phys. Rev. B 2013, 87, 125415.

49

Lee, C. G.; Yan, H.; Brus, L. E.; Heinz, T. F.; Hone, J.; Ryu, S. M. Anomalous lattice vibrations of single- and few-layer MoS2. ACS Nano 2010, 4, 2695-2700.

Nano Research
Pages 511-517
Cite this article:
Shaw JC, Zhou H, Chen Y, et al. Chemical vapor deposition growth of monolayer MoSe2 nanosheets. Nano Research, 2014, 7(4): 511-517. https://doi.org/10.1007/s12274-014-0417-z

578

Views

347

Crossref

N/A

Web of Science

335

Scopus

0

CSCD

Altmetrics

Received: 07 November 2013
Revised: 14 January 2014
Accepted: 15 January 2014
Published: 01 April 2014
© Tsinghua University Press and Springer-Verlag Berlin Heidelberg 2014
Return