AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Highly sensitive phototransistors based on two-dimensional GaTe nanosheets with direct bandgap

Pingan Hu1( )Jia Zhang1Mina Yoon2Xiao-Fen Qiao3Xin Zhang3Wei Feng1Pingheng Tan3( )Wei Zheng1Jingjing Liu1Xiaona Wang1Juan C. Idrobo2David B. Geohegan2Kai Xiao2( )
Key Lab of Microsystem and MicrostructureHarbin Institute of TechnologyMinistry of Education, No. 2 Yikuang StreetHarbin150080China
Center for Nanophase Materials SciencesOak Ridge National Laboratory, One Bethel Valley Road, Oak RidgeTN37831USA
State Key Laboratory of Superlattices and MicrostructuresInstitute of SemiconductorsChinese Academy of SciencesBeijing100083China
Show Author Information

Graphical Abstract

Abstract

Highly sensitive phototransistors based on two-dimensional (2D) GaTe nanosheet have been demonstrated. The performance (photoresponsivity, detectivity) of the GaTe nanosheet phototransistor can be efficiently adjusted by using the applied gate voltage. The devices exhibit an ultrahigh photoresponsivity of 274.3 AW-1. The detectivity of 2D GaTe devices is ~1012 Jones, which surpasses that of currently-exploited InGaAs photodetectors (1011-1012 Jones). To reveal the origin of the enhanced photocurrent in GaTe nanosheets, theoretical modeling of the electronic structures was performed to show that GaTe nanosheets also have a direct bandgap structure, which contributes to the promotion of photon absorption and generation of excitons. This work shows that GaTe nanosheets are promising materials for high performance photodetectors.

Electronic Supplementary Material

Download File(s)
nr-7-5-694_ESM.pdf (567 KB)

References

1

Geim, A. K.; Grigorieva, I. V. Van der Waals heterostructure. Nature 2013, 499, 419-425.

2

Tang, Q.; Zhou, Z. Graphene-analogous low-dimensional materials. Prog. Mater. Sci. 2013, 58, 1244-1315.

3

Huang, X.; Zeng, Z. Y.; Zhang, H. Metal dichalcogenide nanosheets: Preparation, properties and applications. Chem. Soc. Rev. 2013, 42, 1934-1946.

4

Chhowalla, M.; Shin, H. S.; Eda, G.; Li, L. J.; Loh, K. P.; Zhang, H. The chemistry of two-dimensional layered transition metal dichalcogenide nanosheets. Nat. Chem. 2013, 5, 263-275.

5

Zeng, Z. Y.; Yin, Z. Y.; Huang, X.; Li, H.; He, Q. Y.; Lu, G.; Boey, F.; Zhang, H. Single-layer semiconducting nanosheets: High-yield preparation and device fabrication. Angew. Chem. Int. Ed. 2011, 50, 11093-11097.

6

He, Q. Y.; Zeng, Z. Y.; Li, H.; Wu, S. X.; Huang, X.; Zhang, H. Fabrication of flexible MoS2 thin-film transistor arrays for practical gas-sensing applications. Small 2012, 8, 2994-2999.

7

Wu, J.; Li, H.; Yin, Z. Y.; Li, H.; Liu, J. Q.; Cao, X. H.; Zhang, Q.; Zhang, H. Layer thinning and etching of mechanically exfoliated MoS2 nanosheets by thermal annealing in air. Small 2013, 9, 3314-3319.

8

Yin, Z. Y.; Li, H.; Li, H.; Jiang, L.; Shi, Y. M.; Sun, Y. H.; Lu, G.; Zhang, Q.; Chen, X. D.; Zhang, H. Single-layer MoS2 phototransistors. ACS Nano 2012, 6, 74-80.

9

Zhang, Y.; Zhang, Y. F.; Ji, Q. Q.; Ju, J.; Yuan, H. T.; Shi, J. P.; Gao, T.; Ma, D. L.; Liu, M. X.; Chen, Y. B., et al. Controlled growth of high-quality monolayer WS2 layers on sapphire and imaging its grain boundary. ACS Nano 2013, 7, 8963-8971.

10

Hu, P. A.; Wen, Z. Z.; Wang, L. F.; Tan, P. H.; Xiao, K. Synthesis of few-layer GaSe nanosheets for high performance photodetectors. ACS Nano 2012, 6, 5988-5994.

11

Hu, P. A.; Wang, L. F.; Yoon, M.; Zhang, J.; Feng, W.; Wang, X. N.; Wen, Z. Z.; Idrobo, J. C.; Miyamoto, Y.; Geohegan, D. B.; Xiao, K. Highly responsive ultrathin GaS nanosheet photodetectors on rigid and flexible substrates. Nano Lett. 2013, 13, 1649-1654.

12

Lin, M.; Wu, D.; Zhou, Y.; Huang, W.; Jiang, W.; Zheng, W. S.; Zhao, S. L.; Jin, C. H.; Guo, Y. F.; Peng, H. L., et al. Controlled growth of atomically thin In2Se3 flakes by van der Waals epitaxy. J. Am. Chem. Soc. 2013, 135, 13274-13277.

13

Zhou,Y. B.; Nie,Y. F.; Liu,Y. J.; Yan, K.; Hong, J. H.; Jin, C. H.; Zhou, Y.; Yin, J. B.; Liu, Z. F.; Peng, H. L. Epitaxy and photoresponse of two-dimensional GaSe crystals on flexible transparent mica sheets. ACS Nano, in press, DOI: 10.1021/nn405529r.

14

Nair, R. R.; Blake, P.; Grigorenko, A. N.; Novoselov, K. S.; Booth, T. J.; Stauber, T.; Peres, N. M. R.; Geim, A. K. Fine structure constant defines visual transparency of graphene. Science 2008, 320, 1308.

15

Xia, F. N.; Mueller, T.; Lin, Y. M.; Valdes-Garcia, A.; Avouris, P. Ultrafast graphene photodetector. Nat. Nanotechnol. 2009, 4, 839-843.

16

Gan, X. T.; Shiue, R. J.; Gao, Y. D.; Meric, I.; Heinz, T. F.; Shepard, K.; Hone, J.; Assefa, S.; Englund, D. Chip-integrated ultrafast graphene photodetector with high responsivity. Nat. Photonics 2013, 7, 883-887.

17

Khan, M. A.; Kuznia, J. N.; Olson, D. T.; Blasingame, M.; Bhattarai, A. R. Schottky barrier photodetector based on Mg-doped p-type GaN films. Appl. Phys. Lett. 1993, 63, 2455-2456.

18

Zhang, Y. Z.; Liu, T.; Meng, B.; Li, X. H.; Liang, G. Z.; Hu, X. N.; Zhang, Q. J. Broadband high photoresponse from pure monolayer graphene photodetector. Nat. Commun. 2013, 4, 1811.

19

Lopez-Sanchez, O.; Lembke, D.; Kayci, M.; Radenovic, A.; Kis, A. Ultrasensitive photodetectors based on monolayer MoS2. Nat. Nanotechnol. 2013, 8, 497-501.

20

Ji, Q. Q.; Zhang, Y. F.; Gao, T.; Zhang, Y.; Ma, D. L.; Liu, M. X.; Chen, Y. B.; Qiao, X. F.; Tan, P. H.; Kan, M., et al. Epitaxial monolayer MoS2 on mica with novel photoluminescence. Nano Lett. 2013, 13, 3870-3877.

21

Najmaei, S.; Liu, Z.; Zhou, W.; Zou, X. L.; Shi, G.; Lei, S. D.; Yakobson, B. I.; Idrobo, J. C.; Ajayan, P. M.; Lou, J. Vapour phase growth and grain boundary structure of molybdenum disulphide atomic layers. Nat. Mater. 2013, 12, 753-759.

22

Genut, M.; Margulis, L.; Hodes, G.; Tenne, R. Preparation and microstructure WS2 thin films. Thin Solid Films, 1992, 217, 91-97.

23

Leão, C. R.; Lordi, V. Ab initio guided optimization of GaTe for radiation detection applications. Phys. Rev. B 2011, 84, 165206.

24

Bose, D. N.; Pal, S. Photoconductivity, low-temperature conductivity, and magnetoresistance studies on the layered semiconductor GaTe. Phys. Rev. B 2001, 63, 235321.

25

Mandal, K. C.; Krishna, R. M.; Hayes, T. C.; Muzykov, P. G.; Das, S.; Sudarshan, T. S.; Ma, S. G. Layered GaTe crystals for radiation detectors. IEEE Trans. Nucl Sci. 2011, 58, 1981-1986.

26

Julien, C.; Ivanov, I.; Ecrepont, C.; Guittard, M. Optical and electrical properties of Ga2Te3 crystals. Phys. Statu. Solidi (a) 1994, 145, 207-215.

27

Konstantatos, G.; Howard, I.; Fischer, A.; Hoogland, S.; Clifford, J.; Klem, E.; Levina, L.; Sargent, E. H. Ultrasensitive solution-cast quantum dot photodetectors. Nature 2006, 442, 180-183.

28

Loudon, R. The Raman effect in crystals. Adv. Phys. 2001, 50, 813-864.

29

Lee, C.; Yan, H.; Brus, L. E.; Heinz, T. F.; Hone, J.; Ryu, S. Anomalous lattice vibrations of single- and few-layer MoS2. ACS Nano 2010, 4, 2695-2700.

30

Late, D. J.; Liu, B.; Matte, H. S. S. R.; Rao, C. N. R.; Dravid, V. P. Rapid characterization of ultrathin layers of chalcogenides on SiO2/Si substrates. Adv. Funct. Mater. 2012, 22, 1894-1905.

31

Harper, P. G.; Hilder, J. A. Exciton spectra in thin crystals. Phys. Status Solidi (b). 1968, 26, 69-76.

32

Radisavljevic, B.; Radenovic, A.; Brivio, J.; Giacometti, V.; Kis, A. Single-layer MoS2 transistors. Nat. Nanotechnol. 2011, 6, 147-150.

33

Late, D. J.; Liu, B.; Luo, J. J.; Yan, A. M.; Matte, H. S. S. R.; Grayson, M.; Rao, C. N. R.; Dravid, V. P. GaS and GaSe ultrathin layer transistors. Adv. Mater. 2012, 24, 3549-3554.

34

Perdew, J. P.; Burke, K.; Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 1996, 77, 3865-3868.

35

Kresse, G.; Joubert, D. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B 1999, 59, 1758-1775.

Nano Research
Pages 694-703
Cite this article:
Hu P, Zhang J, Yoon M, et al. Highly sensitive phototransistors based on two-dimensional GaTe nanosheets with direct bandgap. Nano Research, 2014, 7(5): 694-703. https://doi.org/10.1007/s12274-014-0430-2

812

Views

151

Crossref

N/A

Web of Science

155

Scopus

3

CSCD

Altmetrics

Received: 04 January 2014
Revised: 15 February 2014
Accepted: 17 February 2014
Published: 23 April 2014
© Tsinghua University Press and Springer-Verlag Berlin Heidelberg 2014
Return