AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Unexpected luminescence enhancement of upconverting nanocrystals by cation exchange with well retained small particle size

Mingliang DengLeyu Wang( )
State Key Laboratory of Chemical Resource Engineering Beijing Key Laboratory of Environmentally Harmful Chemical Analysis, School of Science, Beijing University of Chemical TechnologyBeijing 100029 China
Show Author Information

Graphical Abstract

Abstract

Highly luminescent upconversion nanoparticles (UCNPs) with small sizes are highly desirable for bioapplications. A facile in situ cation exchange strategy has been developed to greatly enhance the UC luminescence of hexagonal phase NaYF4 NPs while maintaining their small particle size and shape. Via a cation exchange treatment by hot-injecting Gd3+ precursors into the as-prepared NPs solution without pre-separation, the naked-eye visible UC emission of the NPs was enhanced about 29 times under 980 nm near infrared (NIR) excitation with unchanged particle size. The cation exchange process was further demonstrated for the case of NaYF4 nanorods (NRs). After the cation exchange, the nanorod was broken into two NPs with stronger emission. The cation exchanged hydrophobic UCNPs were further encapsulated with poly(amino acid) and successfully applied for targeted cancer cell UC luminescence imaging.

Electronic Supplementary Material

Download File(s)
nr-7-5-782_ESM.pdf (1.3 MB)

References

1

Chen, G. Y.; Ohulchanskyy, T. Y.; Kumar, R.; Agren, H.; Prasad, P. N. Ultrasmall monodisperse NaYF4: Yb3+/Tm3+ nanocrystals with enhanced near-infrared to near-infrared upconversion photoluminescence. ACS Nano 2010, 4, 3163-3168.

2

Xiong, L. Q.; Chen, Z. G.; Tian, Q. W.; Cao, T. Y.; Xu, C. J.; Li, F. Y. High contrast upconversion luminescence targeted imaging in vivo using peptide-labeled nanophosphors. Anal. Chem. 2009, 81, 8687-8694.

3

Liu, Q.; Sun, Y.; Yang, T. S.; Feng, W.; Li, C. G.; Li, F. Y. Sub-10 nm hexagonal lanthanide-doped NaLuF4 upconversion nanocrystals for sensitive bioimaging in vivo. J. Am. Chem. Soc. 2011, 133, 17122-17125.

4

Zhang, C. M.; Lin, J. Defect-related luminescent materials: Synthesis, emission properties and applications. Chem. Soc. Rev. 2012, 41, 7938-7961.

5

Wang, F.; Liu, X. G. Upconversion multicolor fine-tuning: Visible to near-infrared emission from lanthanide-doped NaYF4 nanoparticles. J. Am. Chem. Soc. 2008, 130, 5642-5643.

6

Wang, F.; Han, Y.; Lim, C. S.; Lu, Y. H.; Wang, J.; Xu, J.; Chen, H. Y.; Zhang, C.; Hong, M. H.; Liu, X. G. Simultaneous phase and size control of upconversion nanocrystals through lanthanide doping. Nature 2010, 463, 1061-1065.

7

Wang, F.; Wang, J. A.; Liu, X. G. Direct evidence of a surface quenching effect on size-dependent luminescence of upconversion nanoparticles. Angew. Chem. -Int. Edit. 2010, 49, 7456-7460.

8

Liu, Q.; Peng, J. J.; Sun, L. N.; Li, F. Y. High-efficiency upconversion luminescent sensing and bioimaging of Hg(Ⅱ) by chromophoric ruthenium complex-assembled nanophosphors. ACS Nano 2011, 5, 8040-8048.

9

Xia, A.; Gao, Y.; Zhou, J.; Li, C. Y.; Yang, T. S.; Wu, D. M.; Wu, L. M.; Li, F. Y. Core-shell NaYF4: Yb3+, Tm3+@FexOy nanocrystals for dual-modality T2-enhanced magnetic resonance and NIR-to-NIR upconversion luminescent imaging of small-animal lymphatic node. Biomaterials 2011, 32, 7200-7208.

10

Zhou, J.; Yu, M. X.; Sun, Y.; Zhang, X. Z.; Zhu, X. J.; Wu, Z. H.; Wu, D. M.; Li, F. Y. Fluorine-18-labeled Gd3+/Yb3+/Er3+ co-doped NaYF4 nanophosphors for multimodality PET/MR/ UCL imaging. Biomaterials 2011, 32, 1148-1156.

11

Zhou, J.; Liu, Z.; Li, F. Y. Upconversion nanophosphors for small-animal imaging. Chem. Soc. Rev. 2012, 41, 1323-1349.

12

Jiang, S.; Zhang, Y. Upconversion nanoparticle-based FRET system for study of siRNA in live cells. Langmuir 2010, 26, 6689-6694.

13

Deng, M. L.; Tu, N.; Bai, F.; Wang, L. Y. Surface functionalization of hydrophobic nanocrystals with one particle per micelle for bioapplications. Chem. Mater. 2012, 24, 2592-2597.

14

Wang, F.; Banerjee, D.; Liu, Y. S.; Chen, X. Y.; Liu, X. G. Upconversion nanoparticles in biological labeling, imaging, and therapy. Analyst 2010, 135, 1839-1854.

15

Cheng, L. A.; Yang, K.; Zhang, S. A.; Shao, M. W.; Lee, S. T.; Liu, Z. Highly-sensitive multiplexed in vivo imaging using PEGylated upconversion nanoparticles. Nano Res. 2010, 3, 722-732.

16

Yang, Y. M.; Shao, Q.; Deng, R. R.; Wang, C.; Teng, X.; Cheng, K.; Cheng, Z.; Huang, L.; Liu, Z.; Liu, X. G. et al. . In vitro and in vivo uncaging and bioluminescence imaging by using photocaged upconversion nanoparticles. Angew. Chem. Int. Edit. 2012, 51, 3125-3129.

17

Wang, L. Y.; Li, Y. D. Green upconversion nanocrystals for DNA detection. Chem. Commun. 2006, 2557-2559.

18

Wang, C.; Tao, H. Q.; Cheng, L.; Liu, Z. Near-infrared light induced in vivo photodynamic therapy of cancer based on upconversion nanoparticles. Biomaterials 2011, 32, 6145-6154.

19

Ang, L. Y.; Lim, M. E.; Ong, L. C.; Zhang, Y. Applications of upconversion nanoparticles in imaging, detection and therapy. Nanomedicine 2011, 6, 1273-1288.

20

Dai, Y. L.; Yang, D. M.; Ma, P. A.; Kang, X. J.; Zhang, X.; Li, C. X.; Hou, Z. Y.; Cheng, Z. Y.; Lin, J. Doxorubicin conjugated NaYF4: Yb3+/Tm3+ nanoparticles for therapy and sensing of drug delivery by luminescence resonance energy transfer. Biomaterials 2012, 33, 8704-8713.

21

Yang, D. M.; Li, G. G.; Kang, X. J.; Cheng, Z. Y.; Ma, P. A.; Peng, C.; Lian, H. Z.; Li, C. X.; Lin, J. Room temperature synthesis of hydrophilic Ln3+-doped KGdF4 (Ln = Ce, Eu, Tb, Dy) nanoparticles with controllable size: Energy transfer, size-dependent and color-tunable luminescence properties. Nanoscale 2012, 4, 3450-3459.

22

Deng, M. L.; Ma, Y. X.; Huang, S.; Hu, G. F.; Wang, L. Y. Monodisperse upconversion NaYF4 nanocrystals: Syntheses and bioapplications. Nano Res. 2011, 4, 685-694.

23

Li, H.; Wang, L. Y. NaYF4: Yb3+/Er3+ nanoparticle-based upconversion luminescence resonance energy transfer sensor for mercury(Ⅱ) quantification. Analyst 2013, 138, 1589-1595.

24

An, M. Y.; Cui, J. B.; He, Q.; Wang, L. Y. Down-/ up-conversion luminescence nanocomposites for dual-modal cell imaging. J. Mater. Chem. B 2013, 1, 1333-1339.

25

Li, H.; Wang, L. Y. Preparation and upconversion luminescence cell imaging of O-carboxymethyl chitosan-functionalized NaYF4: Yb3+/Tm3+/Er3+ nanoparticles. Chin. Sci. Bull. 2013, 58, 4051-4056.

26

Shan, J. N.; Uddi, M.; Yao, N.; Ju, Y. G. Anomalous Raman scattering of colloidal Yb3+, Er3+ codoped NaYF4 nanophosphors and dynamic probing of the upconversion luminescence. Adv. Funct. Mater. 2010, 20, 3530-3537.

27

Wang, L. Y.; Yan, R. X.; Hao, Z. Y.; Wang, L.; Zeng, J. H.; Bao, H.; Wang, X.; Peng, Q.; Li, Y. D. Fluorescence resonant energy transfer biosensor based on upconversion-luminescent nanoparticles. Angew. Chem. Int. Edit. 2005, 44, 6054-6057.

28

Yin, A. X.; Zhang, Y. W.; Sun, L. D.; Yan, C. H. Colloidal synthesis and blue based multicolor upconversion emissions of size and composition controlled monodisperse hexagonal NaYF4: Yb, Tm nanocrystals. Nanoscale 2010, 2, 953-959.

29

Wang, Y. H.; Cai, R. X.; Liu, Z. H. Controlled synthesis of NaYF4: Yb, Er nanocrystals with upconversion fluorescence via a facile hydrothermal procedure in aqueous solution. CrystEngComm 2011, 13, 1772-1774.

30

Zhang, H.; Li, Y. J.; Lin, Y. C.; Huang, Y.; Duan, X. F. Composition tuning the upconversion emission in NaYF4: Yb/Tm hexaplate nanocrystals. Nanoscale 2011, 3, 963-966.

31

Li, Z. Q.; Zhang, Y. An efficient and user-friendly method for the synthesis of hexagonal-phase NaYF4: Yb, Er/Tm nanocrystals with controllable shape and upconversion fluorescence. Nanotechnology 2008, 19, 345606.

32

Zhang, H.; Li, Y. J.; Ivanov, I. A.; Qu, Y. Q.; Huang, Y.; Duan, X. F. Plasmonic modulation of the upconversion fluorescence in NaYF4: Yb/Tm hexaplate nanocrystals using gold nanoparticles or nanoshells. Angew. Chem. Int. Edit. 2010, 49, 2865-2868.

33

Zhang, H.; Xu, D.; Huang, Y.; Duan, X. F. Highly spectral dependent enhancement of upconversion emission with sputtered gold island films. Chem. Commun. 2011, 47, 979-981.

34

Mai, H. X.; Zhang, Y. W.; Sun, L. D.; Yan, C. H. Highly efficient multicolor up-conversion emissions and their mechanisms of monodisperse NaYF4: Yb, Er core and core/ shell-structured nanocrystals. J. Phys. Chem. C 2007, 111, 13721-13729.

35

Liang, X.; Wang, X.; Zhuang, J.; Peng, Q.; Li, Y. D. Synthesis of NaYF4 nanocrystals with predictable phase and shape. Adv. Funct. Mater. 2007, 17, 2757-2765.

36

Wang, L. Y.; Li, Y. D. Controlled synthesis and luminescence of lanthanide doped NaYF4 nanocrystals. Chem. Mater. 2007, 19, 727-734.

37

Wang, L. Y.; Li, Y. D. Na(Y1.5Na0.5)F6 single-crystal nanorods as multicolor luminescent materials. Nano Lett. 2006, 6, 1645-1649.

38

Liu, Y. X.; Wang, D. S.; Shi, J. X.; Peng, Q.; Li, Y. D. Magnetic tuning of upconversion luminescence in lanthanide-doped bifunctional nanocrystals. Angew. Chem. Int. Edit. 2013, 52, 4366-4369.

39

Li, H.; Wang, L. Y. Controllable multicolor upconversion luminescence by tuning the NaF dosage. Chem. —Asian J. 2014, 9, 153-157.

40

Bednarkiewicz, A.; Wawrzynczyk, D.; Gagor, A.; Kepinski, L.; Kurnatowska, M.; Krajczyk, L.; Nyk, M.; Samoc, M.; Strek, W. Giant enhancement of upconversion in ultra-small Er3+/Yb3+: NaYF4 nanoparticles via laser annealing. Nanotechnology 2012, 23, 145705.

41

Wang, H. Q.; Nann, T. Monodisperse upconverting nanocrystals by microwave-assisted synthesis. ACS Nano 2009, 3, 3804-3808.

42

Abel, K. A.; Boyer, J. C.; Andrei, C. M.; van Veggel, F. Analysis of the shell thickness distribution on NaYF4/NaGdF4 core/shell nanocrystals by EELS and EDS. J. Phys. Chem. Lett. 2011, 2, 185-189.

43

Guo, H.; Li, Z. Q.; Qian, H. S.; Hu, Y.; Muhammad, I. N. Seed-mediated synthesis of NaYF4: Yb, Er/NaGdF4 nanocrystals with improved upconversion fluorescence and MR relaxivity. Nanotechnology 2010, 21, 125602.

44

Wang, X.; Zhuang, J.; Peng, Q.; Li, Y. D. A general strategy for nanocrystal synthesis. Nature 2005, 437, 121-124.

45

Liang, X.; Wang, X.; Zhuang, J.; Peng, Q.; Li, Y. D. Branched NaYF4 nanocrystals with luminescent properties. Inorg. Chem. 2007, 46, 6050-6055.

46

Mai, H. X.; Zhang, Y. W.; Si, R.; Yan, Z. G.; Sun, L. D.; You, L. P.; Yan, C. H. High-quality sodium rare-earth fluoride nanocrystals: Controlled synthesis and optical properties. J. Am. Chem. Soc. 2006, 128, 6426-6436.

47

Vetrone, F.; Naccache, R.; Mahalingam, V.; Morgan, C. G.; Capobianco, J. A. The active-core/active-shell approach: A strategy to enhance the upconversion luminescence in lanthanide-doped nanoparticles. Adv. Funct. Mater. 2009, 19, 2924-2929.

48

Boyer, J. C.; Manseau, M. P.; Murray, J. I.; van Veggel, F. Surface modification of upconverting NaYF4 nanoparticles with PEG-phosphate ligands for NIR (800 nm) biolabeling within the biological window. Langmuir 2010, 26, 1157-1164.

49

Song, C. H.; Ye, Z. Q.; Wang, G. L.; Yuan, J. L.; Guan, Y. F. Core-shell nanoarchitectures: A strategy to improve the efficiency of luminescence resonance energy transfer. ACS Nano 2010, 4, 5389-5397.

50

Chaudhuri, R. G.; Paria, S. Core/shell nanoparticles: Classes, properties, synthesis mechanisms, characterization, and applications. Chem. Rev. 2012, 112, 2373-2433.

51

Wang, Y.; Tu, L. P.; Zhao, J. W.; Sun, Y. J.; Kong, X. G.; Zhang, H. Upconversion luminescence of β -NaYF4: Yb3+, Er3+@β-NaYF4 core/shell nanoparticles: Excitation power, density and surface dependence. J. Phys. Chem. C 2009, 113, 7164-7169.

52

Schafer, H.; Ptacek, P.; Zerzouf, O.; Haase, M. Synthesis and optical properties of KYF4/Yb, Er nanocrystals, and their surface modification with undoped KYF4. Adv. Funct. Mater. 2008, 18, 2913-2918.

53

Yi, G. S.; Chow, G. M. Water-soluble NaYF4: Yb, Er(Tm)/ NaYF4/polymer core/shell/shell nanoparticles with significant enhancement of upconversion fluorescence. Chem. Mater. 2007, 19, 341-343.

54

Zhang, C.; Lee, J. Y. Prevalence of anisotropic shell growth in rare earth core-shell upconversion nanocrystals. ACS Nano 2013, 7, 4393-4402.

55

Su, Q. Q.; Han, S. Y.; Xie, X. J.; Zhu, H. M.; Chen, H. Y.; Chen, C. K.; Liu, R. S.; Chen, X. Y.; Wang, F.; Liu, X. G. The effect of surface coating on energy migration-mediated upconversion. J. Am. Chem. Soc. 2012, 134, 20849-20857.

56

Qian, H. S.; Zhang, Y. Synthesis of hexagonal-phase core-shell NaYF4 nanocrystals with tunable upconversion fluorescence. Langmuir 2008, 24, 12123-12125.

57

Son, D. H.; Hughes, S. M.; Yin, Y. D.; Alivisatos, A. P. Cation exchange reactions in ionic nanocrystals. Science 2004, 306, 1009-1012.

58

Abel, K. A.; Qiao, H. J.; Young, J. F.; van Veggel, F. Four-fold enhancement of the activation energy for nonradiative decay of excitons in PbSe/CdSe core/shell versus PbSe colloidal quantum dots. J. Phys. Chem. Lett. 2010, 1, 2334-2338.

59

Dong, C. H.; Korinek, A.; Blasiak, B.; Tomanek, B.; van Veggel, F. Cation exchange: A facile method to make NaYF4: Yb, Tm-NaGdF4 core-shell nanoparticles with a thin, tunable, and uniform shell. Chem. Mater. 2012, 24, 1297-1305.

60

Huang, S.; Bai, M.; Wang, L. Y. General and facile surface functionalization of hydrophobic nanocrystals with poly(amino acid) for cell luminescence imaging Sci. Rep. 2013, 3, 2023.

61

Tu, N. N.; Wang, L. Y. Surface plasmon resonance enhanced upconversion luminescence in aqueous media for TNT selective detection. Chem. Commun. 2013, 49, 6319-6321.

62

Wang, L. Y.; Li, P.; Li, Y. D. Down- and up-conversion luminescent nanorods. Adv. Mater. 2007, 19, 3304-3307.

63

Feng, W.; Sun, L. D.; Zhang, Y. W.; Yan, C. H. Solid-to-hollow single-particle manipulation of a self-assembled luminescent NaYF4: Yb, Er nanocrystal monolayer by electron-beam lithography. Small 2009, 5, 2057-2060.

64

Wei, Y.; Lu, F. Q.; Zhang, X. R.; Chen, D. P. Synthesis of oil-dispersible hexagonal-phase and hexagonal-shaped NaYF4: Yb, Er nanoplates. Chem. Mater. 2006, 18, 5733-5737.

Nano Research
Pages 782-793
Cite this article:
Deng M, Wang L. Unexpected luminescence enhancement of upconverting nanocrystals by cation exchange with well retained small particle size. Nano Research, 2014, 7(5): 782-793. https://doi.org/10.1007/s12274-014-0439-6

805

Views

50

Crossref

N/A

Web of Science

48

Scopus

10

CSCD

Altmetrics

Received: 16 January 2014
Revised: 28 February 2014
Accepted: 02 March 2014
Published: 26 April 2014
© Tsinghua University Press and Springer-Verlag Berlin Heidelberg 2014
Return