AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Mesocrystal Co3O4 nanoplatelets as high capacity anode materials for Li-ion batteries

Dawei Su1,2Shixue Dou1( )Guoxiu Wang2( )
Institute for Superconducting & Electronic Materials University of Wollongong WollongongNSW 2522 Australia
Centre for Clean Energy Technology, School of Chemistry and Forensic ScienceUniversity of Technology SydneySydneyNSW 2007 Australia
Show Author Information

Graphical Abstract

Abstract

Faceted crystals with exposed highly reactive planes have attracted intensive investigations for applications. Herein, we demonstrate a general synthetic method to prepare mesocrystal Co3O4 with predominantly exposed {111} reactive facets by the in situ thermal decomposition from Co(OH)2 nanoplatelets. The mesocrystal feature was identified by field emission scanning electron microscopy, transmission electron microscopy, selected area electron diffraction, and N2 isotherm analyses. When applied as anode material in lithium-ion batteries, mesocrystal Co3O4 nanoplatelets delivered a high specific capacity and an outstanding high rate performance. The superior electrochemical performance should be ascribed to the predominantly exposed {111} active facets and highly accessible surfaces. This synthetic strategy could be extended to prepare other mesocrystal functional nanomaterials.

Electronic Supplementary Material

Download File(s)
nr-7-5-794_ESM.pdf (2.7 MB)

References

1

Yuan, C. Z.; Xiong, S. L.; Zhang, X. G.; Shen, L. F.; Zhang, F.; Gao, B.; Su, L. H. Template-free synthesis of ordered mesoporous NiO/poly (sodium-4-styrene sulfonate) functionalized carbon nanotubes composite for electrochemical capacitors. Nano Res. 2009, 2, 722-732.

2

Yang, H. G.; Sun, C. H.; Qiao, S. Z.; Zou, J.; Liu, G.; Smith, S. C.; Cheng, H. M.; Lu, G. Q. Anatase TiO2 single crystals with a large percentage of reactive facets. Nature 2008, 453, 638-641.

3

Crossland, E. J. W.; Noel, N.; Sivaram, V.; Leijtens, T.; Alexander-Webber, J. A.; Snaith, H. J. Mesoporous TiO2 single crystals delivering enhanced mobility and optoelectronic device performance. Nature 2013, 495, 215-219.

4

Bach, U.; Lupo, D.; Comte, P.; Moser, J. E.; Weissörtel, F.; Salbeck, J.; Spreitzer, H.; Grätzel, M. Solid-state dye-sensitized mesoporous TiO2 solar cells with high photon-to-electron conversion efficiencies. Nature 1998, 395, 583-585.

5

Mamak, M.; Coombs, N.; Ozin, G. Self-assembling solid oxide fuel cell materials: Mesoporous yttria-zirconia and metal-yttria-zirconia solid solutions. J. Am. Chem. Soc. 2000, 122, 8932-8939.

6

Zhu, K.; Wang, D. H.; Liu, J. Self-assembled materials for catalysis. Nano Res. 2009, 2, 1-29.

7

Zhang, Q.; Joo, J. -B.; Lu, Z. D.; Dahl, M.; Oliveira, D. Q. L.; Ye, M. M.; Yin, Y. D. Self-assembly and photocatalysis of mesoporous TiO2 nanocrystal clusters. Nano Res. 2011, 4, 103-114.

8

Li, Y. G.; Tan, B.; Wu, Y. Y. Mesoporous Co3O4 nanowire arrays for lithium ion batteries with high capacity and rate capability. Nano Lett. 2008, 8, 265-270.

9

Su, D. W.; Kim, H. S.; Kim, W. S.; Wang, G. X. Mesoporous nickel oxide nanowires: Hydrothermal synthesis, characterisation and applications for lithium-ion batteries and supercapacitors with superior performance. Chem. -Eur. J. 2012, 18, 8224-8229.

10

Su, D. W.; Ford, M.; Wang, G. X. Mesoporous NiO crystals with dominantly exposed {110} reactive facets for ultrafast lithium storage. Sci. Rep. 2012, 2, 924.

11

Chen, J.; Xu, L. N.; Li, W. Y.; Gou, X. I. α -Fe2O3 nanotubes in gas sensor and lithium-ion battery applications. Adv. Mater. 2005, 17, 582-586.

12

Xu, J. M.; Wang, A. Q.; Wang, X. D.; Su, D. S.; Zhang, T. Synthesis, characterization, and catalytic application of highly ordered mesoporous alumina-carbon nanocomposites. Nano Res. 2011, 4, 50-60.

13

Sun, Z.; Yuan, H.; Liu, Z.; Han, B.; Zhang, X. A highly efficient chemical sensor material for H2S: α-Fe2O3 nanotubes fabricated using carbon nanotube templates. Adv. Mater. 2005, 17, 2993-2997.

14

Jiao, F.; Harrison, A.; Jumas, J. -C.; Chadwick, A. V.; Kockelmann, W.; Bruce, P. G. Ordered mesoporous Fe2O3 with crystalline walls. J. Am. Chem. Soc. 2006, 128, 5468-5474.

15

Lee, I.; Zhang, Q.; Ge, J. P.; Yin, Y. D.; Zaera, F. Encapsulation of supported Pt nanoparticles with mesoporous silica for increased catalyst stability. Nano Res. 2011, 4, 115-123.

16

Li, Q.; Yang, J. P.; Feng, D.; Wu, Z. X.; Wu, Q. L.; Park, S. S.; Ha, C. -S.; Zhao, D. Y. Facile synthesis of porous carbon nitride spheres with hierarchical three-dimensional mesostructures for CO2 capture. Nano Res. 2010, 3, 632-642.

17

Liu, L.; Kou, H. -Z.; Mo, W. L.; Liu, H. J.; Wang, Y. Q. Surfactant-assisted synthesis of α-Fe2O3 nanotubes and nanorods with shape-dependent magnetic properties. J. Phys. Chem. B 2006, 110, 15218-15223.

18

Jia, C. J.; Sun, L. D.; Yan, Z. G.; You, L. P.; Luo, F.; Han, X. D.; Pang, Y. C.; Zhang, Z.; Yan, C. H. Single-crystalline iron oxide nanotubes. Angew. Chem. Int. Ed. 2005, 117, 4402-4407.

19

Reitz, C.; Suchomski, C.; Weidmann, C.; Brezesinski, T. Block copolymer-templated BiFeO3 nanoarchitectures composed of phase-pure crystallites intermingled with a continuous mesoporosity: Effective visible-light photocatalysts? Nano Res. 2011, 4, 414-424.

20

Zhang, D. Q.; Li, G. S.; Yang, X. F.; Yu, J. C. A micrometer-size TiO2 single-crystal photocatalyst with remarkable 80% level of reactive facets. Chem. Commun. 2009, 4381-4383.

21

Leng, M.; Liu, M. Z.; Zhang, Y. B.; Wang, Z. Q.; Yu, C.; Yang, X. G.; Zhang, H. J.; Wang, C. Polyhedral 50-facet Cu2O microcrystals partially enclosed by {311} high-index planes: Synthesis and enhanced catalytic CO oxidation activity. J. Am. Chem. Soc. 2010, 132, 17084-17087.

22

Xie, X. W.; Li, Y.; Liu, Z. -Q.; Haruta, M.; Shen, W. J. Low-temperature oxidation of CO catalysed by Co3O4 nanorods. Nature 2009, 458, 746-749.

23

Hu, L. H.; Peng, Q.; Li, Y. D. Selective synthesis of Co3O4 nanocrystal with different shape and crystal plane effect on catalytic property for methane combustion. J. Am. Chem. Soc. 2008, 130, 16136-16137.

24

Xiong, S. L.; Yuan, C. Z.; Zhang, X. G.; Xi, B. J.; Qian, Y. T. Controllable synthesis of mesoporous Co3O4 nanostructures with tunable morphology for application in supercapacitors. Chem. -Eur. J. 2009, 15, 5320-5326.

25

Xiong, S. L.; Chen, J. S.; Lou, X. W.; Zeng, H. C. Mesoporous Co3O4 and CoO@C topotactically transformed from chrysanthemum-like Co(CO3)0.5(OH). 0.11H2O and their lithium-storage properties. Adv. Funct. Mater. 2012, 22, 861-871.

26

Liu, D. Q.; Wang, X.; Wang, X. B.; Tian, W.; Bando, Y.; Golberg, D. Co3O4 nanocages with highly exposed {110} facets for high-performance lithium storage. Sci. Rep. 2013, 3, 2543.

27

Xiao, Y.; Hu, C. W.; Cao, M. H. High lithium storage capacity and rate capability achieved by mesoporous Co3O4 hierarchical nanobundles. J. Power Sources 2014, 247, 49-56.

28

Venugopal, N.; Lee, D. -J.; Lee, Y. J.; Sun, Y. -K. Self-assembled hollow mesoporous Co3O4 hybrid architectures: A facile synthesis and application in Li-ion batteries. J. Mater. Chem. A 2013, 1, 13164-13170.

29

Xia, X. H.; Tu, J. P.; Xiang, J. Y.; Huang, X. H.; Wang, X. L.; Zhao, X. B. Hierarchical porous cobalt oxide array films prepared by electro-deposition through polystyrene sphere template and their applications for lithium ion batteries. J. Power Sources 2010, 195, 2014-2022.

30

Hu, L.; Yan, N.; Chen, Q. W.; Zhang, P.; Zhong, H.; Zheng, X. R.; Li, Y.; Hu, X. Y. Fabrication based on the Kirkendall effect of Co3O4 porous nanocages with extraordinarily high capacity for lithium storage. Chem. -Eur. J. 2012, 18, 8971-8977.

31

Chen, J.; Xia, X. -H.; Tu, J. -P.; Xiong, Q. -Q.; Yu, Y. -X.; Wang, X. -L.; Gu, C. -D. Co3O4/C core/shell nanowire arrays as advanced materials for lithium ion batteries. J. Mater. Chem. 2012, 22, 15056-15061.

32

Yue, W. B.; Xu, X. X.; Irvine, J. T. S.; Attidekou, P. S.; Liu, C.; He, H. Y.; Zhao, D. Y.; Zhou, W. Z. Mesoporous monocrystalline TiO2 and its solid-state electrochemical properties. Chem. Mater. 2009, 21, 2540-2546.

33

Bian, Z. F.; Zhu, J.; Wen, J.; Cao, F. L; Huo, Y. N.; Qian, X. F.; Cao, Y.; Shen, M. Q.; Li, H. X.; Lu, Y. F. Single-crystal-like titania mesocages. Angew. Chem. Int. Ed. 2011, 50, 1105-1108.

34

Li, L. S.; Sun, N. J.; Huang, Y. Y.; Qin, Y.; Zhao, N. N.; Gao, J. N.; Li, M. X.; Zhou, H. H.; Qi, L. M. Topotactic transformation of single-crystalline precursor discs into disc-like Bi2S3 nanorod networks. Adv. Funct. Mater. 2008, 18, 1194-1201.

35

Wang, T. X.; Cölfen, H.; Antonietti, M. Nonclassical crystallization: Mesocrystals and morphology change of CaCO3 crystals in the presence of a polyelectrolyte additive. J. Am. Chem. Soc. 2005, 127, 3246-3247.

36

Poizot, P.; Laruelle, S.; Grugeon, S.; Dupont, L.; Tarascon, J. -M. Nano-sized transition-metal oxides as negative-electrode materials for lithium-ion batteries. Nature 2000, 407, 496-499.

37

Barreca D.; Cruz-Yusta M.; Gasparotto A.; Maccato C.; Morales J.; Pozza A.; Sada C.; Sánchez L.; Tondello E. Cobalt oxide nanomaterials by vapor-phase synthesis for fast and reversible lithium storage. J. Phys. Chem. C 2010, 114, 10054-10060.

38

Lou X. W.; Deng D.; Lee J. Y.; Archer L. A. Thermal formation of mesoporous single-crystal Co3O4 nano-needles and their lithium storage properties. J. Mater. Chem. 2008, 18, 4397-4401.

39

Edström, K.; Gustafsson, T.; Thomas, J. O. The cathode-electrolyte interface in the Li-ion battery. Electrochim. Acta 2004, 50, 397-403.

40

Poizot, P.; Laruelle, S.; Grugeon, S.; Tarascon, J. -M. Rationalization of the low-potential reactivity of 3d-metal-based inorganic compounds toward Li. J. Electrochem. Soc. 2002, 149, A1212-A1217.

41

Balaya, P.; Li, H.; Kienle, L.; Maier, J. Fully reversible homogeneous and heterogeneous Li storage in RuO2 with high capacity. Adv. Funct. Mater. 2003, 13, 621-625.

42

Maier, J. Nanoionics: Ion transport and electrochemical storage in confined systems. Nat. Mater. 2005, 4, 805-815.

43

Wang, G.; Liu, H.; Horvat, J.; Wang, B.; Qiao, S.; Park, J.; Ahn, H. Highly ordered mesoporous cobalt oxide nanostructures: Synthesis, characterisation, magnetic properties, and applications for electrochemical energy devices. Chem. -Eur. J. 2010, 16, 11020-11027.

44

Feng, J.; Zeng, H. C. Size-controlled growth of Co3O4 nanocubes. Chem. Mater. 2003, 15, 2829-2835.

45

Xu R.; Zeng, H. C. Mechanistic investigation on salt-mediated formation of free-standing Co3O4 nanocubes at 95 ℃. J. Phys. Chem. B 2003, 107, 926-930.

46

Varghese, B.; Zhang, Y. S.; Dai, L.; Tan, V. B. C.; Lim, C. T.; Sow, C. -H. Structure-mechanical property of individual cobalt oxide nanowires. Nano Lett. 2008, 8, 3226-3232.

47

Zhou, Z. -Y.; Tian, N.; Li, J. -T.; Broadwell, I.; Sun, S. -G. Nanomaterials of high surface energy with exceptional properties in catalysis and energy storage. Chem. Soc. Rev. 2011, 40, 4167-4185.

48

Lebedeva, N. P.; Koper, M. T. M.; Feliu, J. M.; van Santen, R. A. Role of crystalline defects in electrocatalysis: Mechanism and kinetics of co adlayer oxidation on stepped platinum electrodes. J. Phys. Chem. B 2002, 106, 12938-12947.

49

Zhang, D. Q.; Wen, M. C.; Zhang, P.; Zhu, J.; Li, G. S.; Li, H. X. Microwave-induced synthesis of porous single-crystal-like TiO2 with excellent lithium storage properties. Langmuir 2012, 28, 4543-4547.

50

Chen, J. S.; Liu, H.; Qiao, S. Z.; Lou, X. W. Carbon-supported ultra-thin anatase TiO2 nanosheets for fast reversible lithium storage. J. Mater. Chem. 2011, 21, 5687-5692.

Nano Research
Pages 794-803
Cite this article:
Su D, Dou S, Wang G. Mesocrystal Co3O4 nanoplatelets as high capacity anode materials for Li-ion batteries. Nano Research, 2014, 7(5): 794-803. https://doi.org/10.1007/s12274-014-0440-0

741

Views

66

Crossref

N/A

Web of Science

66

Scopus

10

CSCD

Altmetrics

Received: 03 January 2014
Revised: 25 February 2014
Accepted: 01 March 2014
Published: 23 April 2014
© Tsinghua University Press and Springer-Verlag Berlin Heidelberg 2014
Return