AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Absorption of light in InP nanowire arrays

Nicklas Anttu1,§( )Alireza Abrand1,2,§Damir Asoli2Magnus Heurlin1Ingvar Åberg2Lars Samuelson1Magnus Borgström1
Division of Solid State Physics Nanometer Structure Consortium at Lund University (nmC@LU)Lund UniversityBox 118Lund22100Sweden
Sol Voltaics ABIdeon Science Park, Scheelevägen 17Lund22370Sweden

§ These authors contributed equally to this work.

Show Author Information

Graphical Abstract

Abstract

An understanding of the absorption of light is essential for efficient photovoltaic and photodetection applications with Ⅲ-Ⅴ nanowire arrays. Here, we correlate experiments with modeling and verify experimentally the predicted absorption of light in InP nanowire arrays for varying nanowire diameter and length. We find that 2, 000 nm long nanowires in a pitch of 400 nm can absorb 94% of the incident light with energy above the band gap and, as a consequence, light which in a simple ray-optics description would be travelling between the nanowires can be efficiently absorbed by the nanowires. Our measurements demonstrate that the absorption for long nanowires is limited by insertion reflection losses when light is coupled from the air top-region into the array. These reflection losses can be reduced by introducing a smaller diameter to the nanowire-part closest to the air top-region. For nanowire arrays with such a nanowire morphology modulation, we find that the absorptance increases monotonously with increasing diameter of the rest of the nanowire.

References

1

Wallentin, J.; Anttu, N.; Asoli, D.; Huffman, M.; Åberg, I.; Magnusson, M. H.; Siefer, G.; Fuss-Kailuweit, P.; Dimroth, F.; Witzigmann, B., et al. InP nanowire array solar cells achieving 13.8% efficiency by exceeding the ray optics limit. Science 2013, 339, 1057–1060.

2

Mariani, G.; Wong, P.-S.; Katzenmeyer, A. M.; Léonard, F.; Shapiro, J.; Huffaker, D. L. Patterned radial GaAs nanopillar solar cells. Nano Lett. 2011, 11, 2490–2494.

3

Goto, H.; Nosaki, K.; Tomioka, K.; Hara, S.; Hiruma, K.; Motohisa, J.; Fukui, T. Growth of core-shell InP nanowires for photovoltaic application by selective-area metal organic vapor phase epitaxy. Appl. Phys. Express 2009, 2, 035004.

4

Cui, Y. C.; Wang, J.; Plissard, S. R.; Cavalli, A.; Vu, T. T. T.; van Veldhoven, R. P. J.; Gao, L.; Trainor, M.; Verheijen, M. A.; Haverkort, J. E. M., et al. Efficiency enhancement of InP nanowire solar cells by surface cleaning. Nano Lett. 2013, 13, 4113–4117.

5

Vj, L.; Oh, J.; Nayak, A. P.; Katzenmeyer, A. M.; Gilchrist, K. H.; Grego, S.; Kobayashi, N. P.; Wang, S.-Y.; Talin, A. A.; Dhar, N. K., et al. A perspective on nanowire photodetectors: Current status, future challenges, and opportunities. IEEE J. Sel. Top. Quant. Electron. 2011, 17, 1002–1032.

6

Svensson, J.; Anttu, N.; Vainorius, N.; Borg, B. M.; Wernersson, L.-E. Diameter-dependent photocurrent in InAsSb nanowire infrared photodetectors. Nano Lett. 2013, 13, 1380–1385.

7

Kästner, G.; Gösele, U. Stress and dislocations at cross-sectional heterojunctions in a cylindrical nanowire. Philos. Mag. 2004, 84, 3803–3824.

8

Gudiksen, M. S.; Lauhon, L. J.; Wang, J. F.; Smith, D. C.; Lieber, C. M. Growth of nanowire superlattice structures for nanoscale photonics and electronics. Nature 2002, 415, 617–620.

9

Björk, M. T.; Ohlsson, B. J.; Sass, T.; Persson, A. I.; Thelander, C.; Magnusson, M. H.; Deppert, K.; Wallenberg, L. R.; Samuelson, L. One-dimensional steeplechase for electrons realized. Nano Lett. 2002, 2, 87–89.

10

Wu, Y. Y.; Fan, R.; Yang, P. D. Block-by-block growth of single-crystalline Si/SiGe superlattice nanowires. Nano Lett. 2002, 2, 83–86.

11

Mårtensson, T.; Svensson, C. P. T.; Wacaser, B. A.; Larsson, M. W.; Seifert, W.; Deppert, K.; Gustafsson, A.; Wallenberg, L. R.; Samuelson, L. Epitaxial Ⅲ-Ⅴ nanowires on silicon. Nano Lett. 2004, 4, 1987–1990.

12

Muskens, O. L.; Rivas, J. G.; Algra, R. E.; Bakkers, E. P. A. M.; Lagendijk, A. Design of light scattering in nanowire materials for photovoltaic applications. Nano Lett. 2008, 8, 2638–2642.

13

Hu, L.; Chen, G. Analysis of optical absorption in silicon nanowire arrays for photovoltaic applications. Nano Lett. 2007, 7, 3249–3252.

14

Hu, S.; Chi, C.-Y.; Fountaine, K. T.; Yao, M. Q.; Atwater, H. A.; Dapkus, P. D.; Lewis, N. S.; Zhou, C. W. Optical, electrical, and solar energy-conversion properties of gallium arsenide nanowire-array photoanodes. Energy Environ. Sci. 2013, 6, 1879–1890.

15

Anttu, N. Geometrical optics, electrostatics, and nanophotonic resonances in absorbing nanowire arrays. Opt. Lett. 2013, 38, 730–732.

16

Anttu, N.; Xu, H. Q. Coupling of light into nanowire arrays and subsequent absorption. J. Nanosci. Nanotechno. 2010, 10, 7183–7187.

17

Anttu, N.; Xu, H. Q. Efficient light management in vertical nanowire arrays for photovoltaics. Opt. Express 2013, 21, A558–A575.

18

Kupec, J.; Stoop, R. L.; Witzigmann, B. Light absorption and emission in nanowire array solar cells. Opt. Express 2010, 18, 27589–27605.

19

Huang, N. F.; Lin, C. X.; Povinelli, M. L. Broadband absorption of semiconductor nanowire arrays for photovoltaic applications. J. Opt. 2012, 14, 024004.

20

Lin, C. X.; Povinelli, M. L. Optical absorption enhancement in silicon nanowire arrays with a large lattice constant for photovoltaic applications. Opt. Express 2009, 17, 19371–19381.

21

Borgström, M. T.; Wallentin, J.; Trägårdh, J.; Ramvall, P.; Ek, M.; Wallenberg, L. R.; Samuelson, L.; Deppert, K. In situ etching for total control over axial and radial nanowire growth. Nano Res. 2010, 3, 264–270.

22

Anttu, N.; Xu, H. Q. Scattering matrix method for optical excitation of surface plasmons in metal films with periodic arrays of subwavelength holes. Phys. Rev. B 2011, 83, 165431.

23

Glembocki, O. J.; Piller, H. Indium phosphide (InP). In Handbook of Optical Constants of Solids. Palik, E. D., ed. New York: Academic Press, 1985. pp. 503–516.

24

Seo, K.; Wober, M.; Steinvurzel, P.; Schonbrun, E.; Dan, Y. P.; Ellenbogen, T.; Crozier, K. B. Multicolored vertical silicon nanowires. Nano Lett. 2011, 11, 1851–1856.

25

Wang, B. M.; Leu, P. W. Tunable and selective resonant absorption in vertical nanowires. Opt. Lett. 2012, 37, 3756–3758.

26

Chattopadhyay, S.; Huang, Y. F.; Jen, Y. J.; Ganguly, A.; Chen, K. H.; Chen, L. C. Anti-reflecting and photonic nanostructures. Mater. Sci. Eng. R. 2010, 69, 1–35.

27

Diedenhofen, S. L.; Janssen, O. T. A.; Grzela, G.; Bakkers, E. P. A. M.; Gómez Rivas, J. Strong geometrical dependence of the absorption of light in arrays of semiconductor nanowires. ACS Nano 2011, 5, 2316–2323.

28

Fan, Z. Y.; Kapadia, R.; Leu, P. W.; Zhang, X. B.; Chueh, Y.-L.; Takei, K.; Yu, K.; Jamshidi, A.; Rathore, A. A.; Ruebusch, D. J. et al. Ordered arrays of dual-diameter nanopillars for maximized optical absorption. Nano Lett. 2010, 10, 3823–3827.

Nano Research
Pages 816-823
Cite this article:
Anttu N, Abrand A, Asoli D, et al. Absorption of light in InP nanowire arrays. Nano Research, 2014, 7(6): 816-823. https://doi.org/10.1007/s12274-014-0442-y

669

Views

87

Crossref

N/A

Web of Science

91

Scopus

0

CSCD

Altmetrics

Received: 25 December 2013
Revised: 26 February 2014
Accepted: 01 March 2014
Published: 27 May 2014
© Tsinghua University Press and Springer-Verlag Berlin Heidelberg 2014
Return