Article Link
Collect
Submit Manuscript
Show Outline
Outline
Graphical Abstract
Abstract
Keywords
Electronic Supplementary Material
References
Show full outline
Hide outline
Research Article

Bivariate-continuous-tunable interface memristor based on Bi2S3 nested nano-networks

Ye Tian1,2Chuangfei Guo3Shengming Guo1Taifung Yu5Qian Liu1,4()
National Center for Nanoscience and Technology (NCNST)China. No.11BeiyitiaoZhongguancunBeijing100190China
Hunan City UniversityYiyangHunan413000China
Department of PhysicsBoston CollegeChestnut HillMA02467USA
Taida Applied Physics SchoolNankai UniversityTianjin300457China
Department of PhysicsThe University of Hong KongPokfulam RoadHong Kong SARChina
Show Author Information

Graphical Abstract

View original image Download original image

Abstract

A memristor that can emulate biological synapses is a promising basic-processing unit in neural-network computation. Here we propose a new-conceptual memristor based on a memoristive interface composed of two types of non-memristive materials, successfully realizing continuously tunable resistance controlled by both voltage (current) and applied time of a single pulse with a swift response comparable with synapses. The brain-like memorizing capability of the memristor is demonstrated. The memoristive mechanism in the interface is thought to be dominated by a Schottky barrier tuned by the capture/release of the carriers in interface traps with dispersive energy.

Electronic Supplementary Material

Download File(s)
nr-7-7-953_ESM.pdf (2.7 MB)

References

1
DARPA/DSO BAA08-28. Systems of Neuromorphic Adaptive Plastic Scalable Electronics (SyNAPSE). http://www.darpa.mil/dso/solicitations/BAA08-28.pdf (accessed Nov. 2rd, 2008).
2

Nicholls, J. G.; Martin, A. R.; Wallace, B. G.; Fuchs, P. A., From neuron to brain; Sinauer Associates Sunderland: MA, 2001.

3

Dieck, S. T.; Brandstatter, J. H. Ribbon synapses of the retina. Cell Tissue Res. 2006, 326, 339–346.

4

Martin, S. J.; Grimwood, P. D.; Morris, R. G. M. Synaptic plasticity and memory: An evaluation of the hypothesis. Annu. Rev. Neurosci. 2000, 23, 649–711.

5

Song, S.; Miller, K. D.; Abbott, L. F. Competitive Hebbian learning through spike-timing-dependent synaptic plasticity. Nat. Neurosci. 2000, 3, 919–926.

6

Tang, Y.; Nyengaard, J. R.; De Groot, D. M. G.; Gundersen, H. J. G. Total regional and global number of synapses in the human brain neocortex. Synapse 2001, 41, 258–273.

7

Joshi, J.; Parker, A. C.; Hsu, C. C. A carbon nanotube cortical neuron with spike-timing-dependent plasticity. Conf. Proc. IEEE Eng. Med. Biol. Soc. 2009, 1651–1654.

8

Jo, S. H.; Chang, T.; Ebong, I.; Bhadviya, B. B.; Mazumder, P.; Lu, W. Nanoscale memristor device as synapse in neuromorphic systems. Nano Lett. 2010, 10, 297–1301.

9

Alibart, F.; Pleutin, S.; Guerin, D.; Novembre, C.; Lenfant, S.; Lmimouni, K.; Gamrat, C.; Vuillaume, D. An organic nanoparticle transistor gehaving as a biological spiking synapse. Adv. Funct. Mater. 2010, 20, 330–337.

10

Martinez, J. J.; Toledo, J.; Garrigos, J.; Ferrandez, J.; Fernandez-Jover, E. Model and hardware emulation of the first synapse of the retina using discrete-time cellular neural networks. 16th IEEE International Conference on Image Processing, 2009, 2677–2680.

11

Strukov, D. B.; Snider, G. S.; Stewart, D. R.; Williams, R. S. The missing memristor found. Nature 2008, 453, 80–83.

12

Chua, L. Memristor: The missing circuit element. IEEE Trans. Circuit Theory 1971, 18, 507–519.

13

Kwon, D. H.; Kim, K. M.; Jang, J. H.; Jeon, J. M.; Lee, M. H.; Kim, G. H.; Li, X. S.; Park, G. S.; Lee, B.; Han, S. et al. Atomic structure of conducting nanofilaments in TiO2 resistive switching memory. Nat. Nanotechnol. 2010, 5, 148–153.

14

Yang, J. J.; Pickett, M. D.; Li, X. M.; Ohlberg, D. A. A.; Stewart, D. R.; Williams, R. S. Memristive switching mechanism for metal/oxide/metal nanodevices. Nat. Nanotechnol. 2008, 3, 429–433.

15

Kuzum, D.; Jeyasingh, R. G. D.; Lee, B.; Wong, H. S. P. Nanoelectronic programmable synapses based on phase change materials for brain-inspired computing. Nano Lett. 2012, 12, 2179–2186.

16

Seo, K.; Kim, I.; Jung, S.; Jo, M.; Park, S.; Park, J.; Shin, J.; Biju, K. P.; Kong, J.; Lee, K. et al. Analog memory and spike-timing-dependent plasticity characteristics of a nanoscale titanium oxide bilayer resistive switching device. Nanotechnology 2011, 22, 254023.

17

Ohno, T.; Hasegawa, T.; Tsuruoka, T.; Terabe, K.; Gimzewski, J. K.; Aono, M. Short-term plasticity and long-term potentiation mimicked in single inorganic synapses. Nat. Mater. 2011, 10, 591–595.

18

Wang, Z. Q.; Xu, H. Y.; Li, X. H.; Yu, H.; Liu, Y. C.; Zhu, X. J. Synaptic learning and memory functions achieved using oxygen ion migration/diffusion in an amorphous InGaZnO memristor. Adv. Funct. Mater. 2012, 22, 2759–2764.

19

Ziegler, M.; Soni, R.; Patelczyk, T.; Ignatov, M.; Bartsch, T.; Meuffels, P.; Kohlstedt, H. An electronic version of Pavlov's dog. Adv. Funct. Mater. 2012, 22, 2744–2749.

20

Chanthbouala, A.; Garcia, V.; Cherifi, R. O.; Bouzehouane, K.; Fusil, S.; Moya, X.; Xavier, S.; Yamada, H.; Deranlot, C.; Mathur, N. D. et al. A ferroelectric memristor. Nat. Mater. 2012, 11, 860–864.

21

Jeong, D. S.; Thomas, R.; Katiyar, R. S.; Scott, J. F.; Kohlstedt, H.; Petraru, A.; Hwang, C. S. Emerging memories: Resistive switching mechanisms and current status. Rep. Prog. Phys. 2012, 75, 076502.

22

Janicka, K.; Velev, J. P.; Tsymbal, E. Y. Quantum nature of two-dimensional electron gas confinement at LaAlO3/SrTiO3 interfaces. Phys. Rev. Lett. 2009, 102, 106803.

23

Sim, H.; Choi, H.; Lee, D.; Chang, M.; Choi, D.; Son, Y.; Lee, E. H.; Kim, W.; Park, Y.; Yoo, I. K., et al. Excellent resistance switching characteristics of Pt/SrTiO3 Schottky junction for multi-bit nonvolatile memory application. Int. El. Devices Meet. 2005, 758–761.

24

Li, Y. T.; Long, S. B.; Liu, Q.; Lu, H. B.; Liu, S.; Liu, M. An overview of resistive random access memory devices. Chinese Sci. Bull. 2011, 56, 3072–3078.

25

Soci, C.; Zhang, A.; Xiang, B.; Dayeh, S.; Aplin, D.; Park, J.; Bao, X.; Lo, Y.; Wang, D. ZnO nanowire UV photodetectors with high internal gain. Nano Lett. 2007, 7, 1003–1009.

26

Guo, C. F.; Cao, S.; Zhang, J.; Tang, H.; Guo, S.; Tian, Y.; Liu, Q. Topotactic transformations of superstructures: From thin films to two-dimensional networks to nested two-dimensional networks. J. Am. Chem. Soc. 2011, 133, 8211–8215.

27

Ahire, R. R.; Sharma, R. P. Photoelectrochemical characterization of Bi2S3 thin films deposited by modified chemical bath deposition. Indian J. Eng. Mater. S. 2006, 13, 140–144.

28

Bhattacharya, R. N.; Pramanik, P. Semiconductor liquid junction solar cell based on chemically deposited Bi2S3 thin film and some semiconducting properties of bismuth chalcogenides. J. Electrochem. Soc. 1982, 129, 332–335.

29

Goutman, J. D.; Glowatzki, E. Time course and calcium dependence of transmitter release at a single ribbon synapse. P. Natl. Acad. Sci. USA 2007, 104, 16341–16346.

30

Magasinski, A.; Dixon, P.; Hertzberg, B.; Kvit, A.; Ayala, J.; Yushin, G. High-performance lithium-ion anodes using a hierarchical bottom-up approach. Nat. Mater. 2010, 9, 353–358.

31

Zhang, L. L.; Zhao, X. S. Carbon-based materials as supercapacitor electrodes. Chem. Soc. Rev. 2009, 38, 2520–2531.

32

Waser, R.; Aono, M. Nanoionics-based resistive switching memories. Nat. Mater. 2007, 6, 833–840.

33

Kuzum, D.; Yu, S.; Wong, H. S. P. Synaptic electronics: Materials, devices and applications. Nanotechnology 2013, 24, 382001.

34

Bao, H.; Li, C. M.; Cui, X.; Song, Q.; Yang, H.; Guo, J. Single-crystalline Bi2S3 nanowire network film and its optical switches. Nanotechnology 2008, 19, 335302.

35

Valov, I.; Waser, R.; Jameson, J. R.; Kozicki, M. N. Electrochemical metallization memories—fundamentals, applications, prospects. Nanotechnology 2011, 22, 254003.

36

Fujimoto, M.; Koyama, H.; Nishi, Y.; Suzuki, T. Resistive switching properties of high crystallinity and low-resistance Pr0.7Ca0.3MnO3 thin film with point-contacted Ag electrodes. Appl. Phys. Lett. 2007, 91, 223504.

37

Liu, Q.; Guan, W.; Long, S.; Jia, R.; Liu, M.; Chen, J. Resistive switching memory effect of ZrO2 films with Zr+ implanted. Appl. Phys. Lett. 2008, 92, 012117.

38

Kim, K. M.; Choi, B. J.; Lee, M. H.; Kim, G. H.; Song, S. J.; Seok, J. Y.; Yoon, J. H.; Han, S.; Hwang, C. S. A detailed understanding on the electronic bipolar resistance switching behavior in Pt/TiO2/Pt structure. Nanotechnology 2011, 22, 254010.

39

Sze, S. M.; Ng, K. K. Physics of Semiconductor Devices; Wiley-Interscience, 2006.

40

Xu, Z. T.; Jin, K. J.; Gu, L.; Jin, Y. L.; Ge, C.; Wang, C.; Guo, H. Z.; Lu, H. B.; Zhao, R. Q.; Yang, G. Z. Evidence for a crucial role played by oxygen vacancies in LaMnO3 resistive switching memories. Small 2012, 8, 1279–1284.

Nano Research
Pages 953-962
Cite this article:
Tian Y, Guo C, Guo S, et al. Bivariate-continuous-tunable interface memristor based on Bi2S3 nested nano-networks. Nano Research, 2014, 7(7): 953-962. https://doi.org/10.1007/s12274-014-0456-5
Metrics & Citations  
Article History
Copyright
Return