Graphical Abstract

A memristor that can emulate biological synapses is a promising basic-processing unit in neural-network computation. Here we propose a new-conceptual memristor based on a memoristive interface composed of two types of non-memristive materials, successfully realizing continuously tunable resistance controlled by both voltage (current) and applied time of a single pulse with a swift response comparable with synapses. The brain-like memorizing capability of the memristor is demonstrated. The memoristive mechanism in the interface is thought to be dominated by a Schottky barrier tuned by the capture/release of the carriers in interface traps with dispersive energy.
Nicholls, J. G.; Martin, A. R.; Wallace, B. G.; Fuchs, P. A., From neuron to brain; Sinauer Associates Sunderland: MA, 2001.
Dieck, S. T.; Brandstatter, J. H. Ribbon synapses of the retina. Cell Tissue Res. 2006, 326, 339–346.
Martin, S. J.; Grimwood, P. D.; Morris, R. G. M. Synaptic plasticity and memory: An evaluation of the hypothesis. Annu. Rev. Neurosci. 2000, 23, 649–711.
Song, S.; Miller, K. D.; Abbott, L. F. Competitive Hebbian learning through spike-timing-dependent synaptic plasticity. Nat. Neurosci. 2000, 3, 919–926.
Tang, Y.; Nyengaard, J. R.; De Groot, D. M. G.; Gundersen, H. J. G. Total regional and global number of synapses in the human brain neocortex. Synapse 2001, 41, 258–273.
Joshi, J.; Parker, A. C.; Hsu, C. C. A carbon nanotube cortical neuron with spike-timing-dependent plasticity. Conf. Proc. IEEE Eng. Med. Biol. Soc. 2009, 1651–1654.
Jo, S. H.; Chang, T.; Ebong, I.; Bhadviya, B. B.; Mazumder, P.; Lu, W. Nanoscale memristor device as synapse in neuromorphic systems. Nano Lett. 2010, 10, 297–1301.
Alibart, F.; Pleutin, S.; Guerin, D.; Novembre, C.; Lenfant, S.; Lmimouni, K.; Gamrat, C.; Vuillaume, D. An organic nanoparticle transistor gehaving as a biological spiking synapse. Adv. Funct. Mater. 2010, 20, 330–337.
Martinez, J. J.; Toledo, J.; Garrigos, J.; Ferrandez, J.; Fernandez-Jover, E. Model and hardware emulation of the first synapse of the retina using discrete-time cellular neural networks. 16th IEEE International Conference on Image Processing, 2009, 2677–2680.
Strukov, D. B.; Snider, G. S.; Stewart, D. R.; Williams, R. S. The missing memristor found. Nature 2008, 453, 80–83.
Chua, L. Memristor: The missing circuit element. IEEE Trans. Circuit Theory 1971, 18, 507–519.
Kwon, D. H.; Kim, K. M.; Jang, J. H.; Jeon, J. M.; Lee, M. H.; Kim, G. H.; Li, X. S.; Park, G. S.; Lee, B.; Han, S. et al. Atomic structure of conducting nanofilaments in TiO2 resistive switching memory. Nat. Nanotechnol. 2010, 5, 148–153.
Yang, J. J.; Pickett, M. D.; Li, X. M.; Ohlberg, D. A. A.; Stewart, D. R.; Williams, R. S. Memristive switching mechanism for metal/oxide/metal nanodevices. Nat. Nanotechnol. 2008, 3, 429–433.
Kuzum, D.; Jeyasingh, R. G. D.; Lee, B.; Wong, H. S. P. Nanoelectronic programmable synapses based on phase change materials for brain-inspired computing. Nano Lett. 2012, 12, 2179–2186.
Seo, K.; Kim, I.; Jung, S.; Jo, M.; Park, S.; Park, J.; Shin, J.; Biju, K. P.; Kong, J.; Lee, K. et al. Analog memory and spike-timing-dependent plasticity characteristics of a nanoscale titanium oxide bilayer resistive switching device. Nanotechnology 2011, 22, 254023.
Ohno, T.; Hasegawa, T.; Tsuruoka, T.; Terabe, K.; Gimzewski, J. K.; Aono, M. Short-term plasticity and long-term potentiation mimicked in single inorganic synapses. Nat. Mater. 2011, 10, 591–595.
Wang, Z. Q.; Xu, H. Y.; Li, X. H.; Yu, H.; Liu, Y. C.; Zhu, X. J. Synaptic learning and memory functions achieved using oxygen ion migration/diffusion in an amorphous InGaZnO memristor. Adv. Funct. Mater. 2012, 22, 2759–2764.
Ziegler, M.; Soni, R.; Patelczyk, T.; Ignatov, M.; Bartsch, T.; Meuffels, P.; Kohlstedt, H. An electronic version of Pavlov's dog. Adv. Funct. Mater. 2012, 22, 2744–2749.
Chanthbouala, A.; Garcia, V.; Cherifi, R. O.; Bouzehouane, K.; Fusil, S.; Moya, X.; Xavier, S.; Yamada, H.; Deranlot, C.; Mathur, N. D. et al. A ferroelectric memristor. Nat. Mater. 2012, 11, 860–864.
Jeong, D. S.; Thomas, R.; Katiyar, R. S.; Scott, J. F.; Kohlstedt, H.; Petraru, A.; Hwang, C. S. Emerging memories: Resistive switching mechanisms and current status. Rep. Prog. Phys. 2012, 75, 076502.
Janicka, K.; Velev, J. P.; Tsymbal, E. Y. Quantum nature of two-dimensional electron gas confinement at LaAlO3/SrTiO3 interfaces. Phys. Rev. Lett. 2009, 102, 106803.
Sim, H.; Choi, H.; Lee, D.; Chang, M.; Choi, D.; Son, Y.; Lee, E. H.; Kim, W.; Park, Y.; Yoo, I. K., et al. Excellent resistance switching characteristics of Pt/SrTiO3 Schottky junction for multi-bit nonvolatile memory application. Int. El. Devices Meet. 2005, 758–761.
Li, Y. T.; Long, S. B.; Liu, Q.; Lu, H. B.; Liu, S.; Liu, M. An overview of resistive random access memory devices. Chinese Sci. Bull. 2011, 56, 3072–3078.
Soci, C.; Zhang, A.; Xiang, B.; Dayeh, S.; Aplin, D.; Park, J.; Bao, X.; Lo, Y.; Wang, D. ZnO nanowire UV photodetectors with high internal gain. Nano Lett. 2007, 7, 1003–1009.
Guo, C. F.; Cao, S.; Zhang, J.; Tang, H.; Guo, S.; Tian, Y.; Liu, Q. Topotactic transformations of superstructures: From thin films to two-dimensional networks to nested two-dimensional networks. J. Am. Chem. Soc. 2011, 133, 8211–8215.
Ahire, R. R.; Sharma, R. P. Photoelectrochemical characterization of Bi2S3 thin films deposited by modified chemical bath deposition. Indian J. Eng. Mater. S. 2006, 13, 140–144.
Bhattacharya, R. N.; Pramanik, P. Semiconductor liquid junction solar cell based on chemically deposited Bi2S3 thin film and some semiconducting properties of bismuth chalcogenides. J. Electrochem. Soc. 1982, 129, 332–335.
Goutman, J. D.; Glowatzki, E. Time course and calcium dependence of transmitter release at a single ribbon synapse. P. Natl. Acad. Sci. USA 2007, 104, 16341–16346.
Magasinski, A.; Dixon, P.; Hertzberg, B.; Kvit, A.; Ayala, J.; Yushin, G. High-performance lithium-ion anodes using a hierarchical bottom-up approach. Nat. Mater. 2010, 9, 353–358.
Zhang, L. L.; Zhao, X. S. Carbon-based materials as supercapacitor electrodes. Chem. Soc. Rev. 2009, 38, 2520–2531.
Waser, R.; Aono, M. Nanoionics-based resistive switching memories. Nat. Mater. 2007, 6, 833–840.
Kuzum, D.; Yu, S.; Wong, H. S. P. Synaptic electronics: Materials, devices and applications. Nanotechnology 2013, 24, 382001.
Bao, H.; Li, C. M.; Cui, X.; Song, Q.; Yang, H.; Guo, J. Single-crystalline Bi2S3 nanowire network film and its optical switches. Nanotechnology 2008, 19, 335302.
Valov, I.; Waser, R.; Jameson, J. R.; Kozicki, M. N. Electrochemical metallization memories—fundamentals, applications, prospects. Nanotechnology 2011, 22, 254003.
Fujimoto, M.; Koyama, H.; Nishi, Y.; Suzuki, T. Resistive switching properties of high crystallinity and low-resistance Pr0.7Ca0.3MnO3 thin film with point-contacted Ag electrodes. Appl. Phys. Lett. 2007, 91, 223504.
Liu, Q.; Guan, W.; Long, S.; Jia, R.; Liu, M.; Chen, J. Resistive switching memory effect of ZrO2 films with Zr+ implanted. Appl. Phys. Lett. 2008, 92, 012117.
Kim, K. M.; Choi, B. J.; Lee, M. H.; Kim, G. H.; Song, S. J.; Seok, J. Y.; Yoon, J. H.; Han, S.; Hwang, C. S. A detailed understanding on the electronic bipolar resistance switching behavior in Pt/TiO2/Pt structure. Nanotechnology 2011, 22, 254010.
Sze, S. M.; Ng, K. K. Physics of Semiconductor Devices; Wiley-Interscience, 2006.
Xu, Z. T.; Jin, K. J.; Gu, L.; Jin, Y. L.; Ge, C.; Wang, C.; Guo, H. Z.; Lu, H. B.; Zhao, R. Q.; Yang, G. Z. Evidence for a crucial role played by oxygen vacancies in LaMnO3 resistive switching memories. Small 2012, 8, 1279–1284.