Discover the SciOpen Platform and Achieve Your Research Goals with Ease.
Search articles, authors, keywords, DOl and etc.
This paper presents the first report of the successful ball-milling exfoliation of graphitic filaments (GANF® carbon nanofibres) into single layer graphene. The addition of small amounts of solvent during the milling process makes it possible to enhance the intercalation of the exfoliating agent (melamine) between the graphene layers, thus promoting exceptional exfoliation. Advantage has also been taken of the fact that the Hansen solubility parameters of graphene are different from those of carbon fibres, which allows single and few-layer graphene to be suspended in a particular solvent, thus discriminating them from poorly exfoliated carbon nanofibres.
Stankovich, S.; Dikin, A. D.; Dommett, H. B. G.; Kohlhaas, M. K.; Zimney, J. E.; Stach, A. E.; Piner, D. R.; Nguyen, T. S.; Ruoff, S. R. Graphene-based composite materials. Nature 2006, 442, 282–286.
Bitounis, D.; Ali-Boucetta, H.; Hong, B. H.; Min, D. -H.; Kostarelos, K. Prospects and challenges of graphene in biomedical applications. Adv. Mater. 2013, 25, 2258–2268.
Bonaccorso, F.; Sun, Z.; Hasan, T.; Ferrari, A. C. Graphene photonics and optoelectronics. Nat. Photonics 2010, 4, 611–622.
Avouris, P.; Marcus, F.; Perebeinos, V. Carbon-nanotube photonics and optoelectronics. Nat. Photonics 2008, 2, 341–350.
Ohta, T.; Bostwick, A.; Seyller, T.; Horn, K.; Rotenberg, E. Controlling the electronic structure of bilayer graphene. Science 2006, 313, 951–954.
Berger, C.; Song, Z.; Li, X.; Wu, X.; Brown, N.; Naud, C.; Mayou, D.; Li, T.; Hass, J.; Marchenkov, A. N.; et al. Electronic confinement and coherence in patterned epitaxial graphene. Science 2006, 312, 1191–1196.
Li, X.; Cai, W.; An, J.; Kim, S.; Nah, J.; Yang, D.; Piner, R.; Velamakanni, A.; Jung, I.; Tutuc, E.; et al. Large-area synthesis of high-quality and uniform graphene films on copper foils. Science 2009, 324, 1312–1314.
Lotya, M.; Hernandez, Y.; King, P. J.; Smith, R. J.; Nicolosi, V.; Karlsson, L. S.; Blighe, F. M.; De, S.; Wang, Z.; McGovern, I. T.; et al. Liquid phase production of graphene by exfoliation of graphite in surfactant/water solutions. J. Am. Chem. Soc. 2009, 131, 3611–3620.
Hernandez, Y.; Nicolosi, V.; Lotya, M.; Blighe, F. M.; Sun, Z.; De, S.; McGovern, I. T.; Holland, B.; Byrne, M.; Gun'Ko, Y. K.; Coleman, J. N.; et al. High-yield production of graphene by liquid-phase exfoliation of graphite. Nat. Nanotechnol. 2008, 3, 563–568.
León, V.; Quintana, M.; Herrero, M. A.; Fierro, J. L. G.; de la Hoz, A.; Prato, M.; Vázquez, E. Few-layer graphenes from ball-milling of graphite with melamine. Chem. Commun. 2011, 47, 10936–10938.
Jia, G.; Wang, H.; Yan, L.; Wang, X.; Pei, R.; Yan, T.; Zhao, Y.; Guo, X. Cytotoxicity of carbon nanomaterials: Single-wall nanotube, multi-wall nanotube, and fullerene. Environ. Sci. Technol. 2005, 39, 1378–1383.
Quintana, M.; Grzelczak, M.; Spyrou, K.; Kooi, B.; Bals, S.; Van Tendeloo, G.; Rudolf, P.; Prato, M. Production of large graphene sheets by exfoliation of graphite under high power ultrasound in the presence of tiopronin. Chem. Commun. 2012, 48, 12159–12161.
Novoselov, K. S.; Geim, A. K.; Morozov, S. V, Jiang, D.; Zhang, Y.; Dubonos, S. V, Grigorieva, I. V, Firsov, A. A. Electric field effect in atomically thin carbon films. Science 2004, 306, 666–669.
Stankovich, S.; Dikin, D. A.; Piner, R. D.; Kohlhaas, K. A.; Kleinhammes, A.; Jia, Y.; Wu, Y.; Nguyen, S. T.; Ruoff, R. S. Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide. Carbon 2007, 45, 1558–1565.
Gómez-Navarro, C.; Meyer, J. C.; Sundaram, R.S.; Chuvilin, A.; Kurasch, S.; Burghard, M.; Kern, K.; Kaiser, U. Atomic structure of reduced graphene oxide. Nano Lett. 2010, 10, 1144–1148.
Gómez-Navarro, C.; Weitz, R. T.; Bittner, A. M.; Scolari, M.; Mews, A.; Burghard, M.; Kern, K.; Electronic transport properties of individual chemically reduced graphene oxide sheets. Nano Lett. 2007, 7, 3499–3503.
León, V.; Rodriguez, A. M.; Prieto, P.; Prato, M.; Vázquez, E. Exfoliation of graphite with triazine derivatives under ball-milling conditions: Preparation of few-layer graphene via selective noncovalent interactions. ACS Nano 2014, 8, 563–571.
Jeon, I. -Y.; Choi, H. -J.; Jung, S. -M.; Seo, J. -M.; Kim, M. -J.; Dai, L.; Baek, J. -B. Large-Scale production of edge-selectively functionalized graphene nanoplatelets via ball milling and their use as metal-free electrocatalysts for oxygen reduction reaction. J. Am. Chem. Soc. 2013, 135, 1386–1393.
Zhao, W.; Wu, F.; Wu, H.; Chen, G. Preparation of colloidal dispersions of graphene sheets in organic solvents by using ball milling. J. Nanomater. 2010, 6, 528235.
Liu, L.; Xiong, D. Z.; Hu, D.; Wu, G.; Chen, P. Production of high quality single- or few-layered graphene by solid exfoliation of graphite in the presence of ammonia borane. Chem. Commun. 2013, 49, 7890–7892.
Aparna, R.; Sivakumar, N.; Balakrishnan, A.; Nair, A. S.; Nair, S. V.; Subramanian, K. R. V. An effective route to produce few-layer graphene using combinatorial ball milling and strong aqueous exfoliants. J. Renew. Sustain. Energy 2013, 5, 033123.
Yi, M.; Shen, Z.; Zhang, X.; Ma, S. Achieving concentrated graphene dispersions in water/acetone mixtures by the strategy of tailoring Hansen solubility parameters. J. Phys. D. Appl. Phys. 2013, 46, 25301–25309.
Bergin, S. D.; Sun, Z.; Rickard, D.; Streich, P. V, Hamilton, J. P.; Coleman, J. N. Multicomponent solubility parameters for single-walled carbon nanotube–solvent mixtures. ACS Nano 2009, 3, 2340–2350.
Coleman, J. N. Liquid exfoliation of defect-free graphene. Acc. Chem. Res. 2013, 46, 14–22.
Coleman, J. N. Liquid-phase exfoliation of nanotubes and graphene. Adv. Funct. Mater. 2009, 19, 3680–3695.
Hernandez, Y.; Lotya, M.; Rickard, D.; Bergin, S. D.; Coleman, J. N. Measurement of multicomponent solubility parameters for graphene facilitates solvent discovery. Langmuir 2010, 26, 3208–32013.
Tibbetts, G. G.; Gorkiewicz, D. W.; Alig, R. L. A new reactor for growing carbon fibers from liquid- and vapor-phase hydrocarbons. Carbon 1993, 31, 809–814.
Weisenberger, M.; Martin-Gullon, I.; Vera-Agullo, J.; Varela-Rizo, H.; Merino, C.; Andrews, R.; Qian, D.; Rantell, T. The effect of graphitization temperature on the structure of helical-ribbon carbon nanofibers. Carbon 2009, 47, 2211–2218.
Bergin, S. D.; Nicolosi, V.; Streich, P. V.; Giordani, S.; Sun, Z.; Windle, A. H.; Ryan, P.; Niraj, N. P. P.; Wang, Z. -T. T.; Carpenter, L.; et al. Towards solutions of single-walled carbon nanotubes in common solvents. Adv. Mater. 2008, 20, 1876–1881.
Abbott, S.; Hansen, C. M.; Yamamoto, H. Hansen Solubility Parameters in Practice; Hansen-solubility. com, 2008.
Lyklema, J. The surface tension of pure liquids: Thermodynamic components and corresponding states. Colloids Surf. A 1999, 156, 413–421.
Tsierkezos, N. G.; Filippou, A. C. Thermodynamic investigation of N, N-dimethylformamide/toluene binary mixtures in the temperature range from 278.15 to 293.15 K. J. Chem. Thermodyn. 2006, 38, 952–961.
Hansen, C. M. Hansen Solubility Parameters—A User's Handbook; CRC Press: Boca Raton, Fl. 2007.
Brandão, S. D. F.; Andrada, D.; Mesquita, A. F.; Santos, A. P.; Gorgulho, H. F.; Paniago, R.; Pimenta, M. A.; Fantini, C.; Furtado, C. A. The influence of oxygen-containing functional groups on the dispersion of single-walled carbon nanotubes in amide solvents. J. Phys. Condens. Matter 2010, 22, 334222.
Guardia, L.; Paredes, J. I.; Villar-Rodil, S.; Rouzaud, J. -N.; Martínez-Alonso, A.; Tascón, J. M. D. Discovery of effective solvents for platelet-type graphite nanofibers. Carbon 2013, 53, 222–230.
Casiraghi, C.; Pisana, S.; Novoselov, K. S.; Geim, A. K.; Ferrari, A. C. Raman fingerprint of charged impurities in graphene. Appl. Phys. Lett. 2007, 91, 233108.
Ferrari, A. C.; Meyer, J. C.; Scardaci, V.; Casiraghi, C.; Lazzeri, M.; Mauri, F.; Piscanec, S.; Jiang, D.; Novoselov, K. S.; Roth, S.; et al. Raman spectrum of graphene and graphene layers. Phys. Rev. Lett. 2006, 97, 187401.
Graf, D.; Molitor, F.; Ensslin, K.; Stampfer, C.; Jungen, A.; Hierold, C.; Wirtz, L.; Spatially resolved Raman spectroscopy of single- and few-layer graphene. Nano Lett. 2007, 7, 238–242.
Mao, H. Y.; Lu, Y. H.; Lin, J. D.; Zhong, S.; Wee, A. T. S.; Chen, W. Manipulating the electronic and chemical properties of graphene via molecular functionalization. Prog. Surf. Sci. 2013, 88, 132–159.
Zhang, W.; Lin, C. -T.; Liu, K. -K.; Tite, T.; Su, C. -Y.; Chang, C. -H.; Lee, Y. -H.; Chu, C. -W.; Wei, K. -H.; Kuo, J. -L.; et al. Opening an electrical band gap of bilayer graphene with molecular doping. ACS Nano 2011, 5, 7517–7524.
Das, A.; Pisana, S.; Chakraborty, B.; Piscanec, S.; Saha, S. K.; Waghmare, U. V.; Novoselov, K. S.; Krishnamurthy, H. R.; Geim, A. K.; Ferrari, A. C.; et al. Monitoring dopants by Raman scattering in an electrochemically top-gated graphene transistor. Nat. Nanotechnol. 2008, 3, 210–215.
Friščić, T. New opportunities for materials synthesis using mechanochemistry. J. Mater. Chem. 2010, 20, 7599–7605.