Discover the SciOpen Platform and Achieve Your Research Goals with Ease.
Search articles, authors, keywords, DOl and etc.
We report substantial improvements and modulation in the photocurrent (PC) and photoluminescence (PL) spectra of monolayer MoS2 recorded under electrostatic and ionic liquid gating conditions. The photocurrent and photoluminescence spectra show good agreement with a dominant peak at 1.85 eV. The magnitude of the photoluminescence can be increased 300% by ionic liquid gating due to the passivation of surface states and trapped charges that act as recombination centers. The photocurrent also doubles when passivated by the ionic liquid. Interestingly, a significant shift of the PL peak position is observed under electrostatic (14 meV) and ionic liquid (30 meV) gating, as a result of passivation. The ionic liquid provides significant screening without any externally applied voltage, indicating that these surface recombination centers have net charge. The acute sensitivity of monolayer MoS2 to ionic liquid gating and passivation arises because of its high surface-to-volume ratio, which makes it especially sensitive to trapped charge and surface states. These results reveal that, in order for efficient optoelectronic devices to be made from monolayer MoS2, some passivation strategy must be employed to mitigate the issues associated with surface recombination.
Splendiani, A.; Sun, L.; Zhang, Y. B.; Li, T. S.; Kim, J.; Chim, C. -Y.; Galli, G.; Wang, F. Emerging photoluminescence in monolayer MoS2. Nano Lett. 2010, 10, 1271–1275.
Zhao, W. J.; Ghorannevis, Z.; Chu, L. Q.; Toh, M.; Kloc, C.; Tan, P. -H.; Eda, G. Evolution of electronic structure in atomically thin sheets of WS2 and WSe2. ACS Nano 2013, 7, 791–797.
Mak, K. F.; Lee, C.; Hone, J.; Shan, J.; Heinz, T. F. Atomically thin MoS2: A new direct-gap semiconductor. Phys. Rev. Lett. 2010, 105, 136805.
Sundaram, R. S.; Engel, M.; Lombardo, A.; Krupke, R.; Ferrari, A. C.; Avouris, P.; Steiner, M. Electroluminescence in single layer MoS2. Nano Lett. 2013, 13, 1416–1421.
Tongay, S.; Suh, J.; Ataca, C.; Fan, W.; Luce, A.; Kang, J. S.; Liu, J.; Ko, C.; Raghunathanan, R.; Zhou, J.; et al. Defects activated photoluminescence in two-dimensional semiconductors: interplay between bound, charged, and free excitons. Sci. Rep. 2013, 3, 2657.
Yin, Z. Y.; Li, H.; Li, H.; Jiang, L.; Shi, Y. M.; Sun, Y. H.; Lu, G.; Zhang, Q.; Chen, X. D.; Zhang, H. Single-layer MoS2 phototransistors. ACS Nano 2012, 6, 74–80.
Choi, W.; Cho, M. Y.; Konar, A.; Lee, J. H.; Cha, G. B.; Hong, S. C.; Kim, S.; Kim, J.; Jena, D.; Joo, J.; et al. High-detectivity multilayer MoS2 phototransistors with spectral response from ultraviolet to infrared. Adv. Mater. 2012, 24, 5832–5836.
Buscema, M.; Barkelid, M.; Zwiller, V.; van der Zant, H. S.; Steele, G. A.; Castellanos-Gomez, A. Large and tunable photothermoelectric effect in single-layer MoS2. Nano Lett. 2013, 13, 358–363.
Wu, C. -C.; Jariwala, D.; Sangwan, V. K.; Marks, T. J.; Hersam, M. C.; Lauhon, L. J. Elucidating the photoresponse of ultrathin MoS2 field-effect transistors by scanning photocurrent microscopy. J. Phys. Chem. Lett. 2013, 4, 2508–2513.
Simon, P.; Gogotsi, Y. Materials for electrochemical capacitors. Nat. Mater. 2008, 7, 845–854.
Aricò, A. S.; Bruce, P.; Scrosati, B.; Tarascon, J. M.; Van Schalkwijk, W. Nanostructured materials for advanced energy conversion and storage devices. Nat. Mater. 2005, 4, 366–377.
Sandberg, H. G. O.; Bäcklund, T. G.; Österbacka, R.; Stubb, H. High-performance all-polymer transistor utilizing a hygroscopic insulator. Adv. Mater. 2004, 16, 1112–1115.
Dhoot, A. S.; Yuen, J. D.; Heeney, M.; McCulloch, I.; Moses, D.; Heeger, A. J. Beyond the metal–insulator transition in polymer electrolyte gated polymer field-effect transistors. P. Natl. Acad. Sci. USA 2006, 103, 11834–11837.
Ye, J. T.; Inoue, S.; Kobayashi, K.; Kasahara, Y.; Yuan, H. T.; Shimotani, H.; Iwasa, Y. Liquid-gated interface superconductivity on an atomically flat film. Nat. Mater. 2010, 9, 125–128.
Alarcón-Lladó, E.; Mayer, M. A.; Boudouris, B. W.; Segalman, R. A.; Miller, N.; Yamaguchi, T.; Wang, K.; Nanishi, Y.; Haller, E. E.; Ager, J. W. PN junction rectification in electrolyte gated Mg-doped InN. Appl. Phys. Lett. 2011, 99, 102106.
Chen, C. -C.; Chang, C. -C.; Li, Z.; Levi, A. F. J.; Cronin, S. B. Gate tunable graphene–silicon Ohmic/Schottky contacts. Appl. Phys. Lett. 2012, 101, 223113.
Braga, D.; Lezama, I. G.; Berger, H.; Morpurgo, A. F. Quantitative determination of the band gap of WS2 with ambipolar ionic liquid-gated transistors. Nano Lett. 2012, 12, 5218–5223.
Novoselov, K. S.; Geim, A. K.; Morozov, S. V.; Jiang, D.; Zhang, Y.; Dubonos, S. V.; Grigorieva, I. V.; Firsov, A. A. Electric field effect in atomically thin carbon films. Science 2004, 306, 666–669.
Radisavljevic, B.; Radenovic, A.; Brivio, J.; Giacometti, V.; Kis, A. Single-layer MoS2 transistors. Nat. Nanotechnol. 2011, 6, 147–150.
Blake, P.; Hill, E. W.; Neto, A. H. C.; Novoselov, K. S.; Jiang, D.; Yang, R.; Booth, T. J.; Geim, A. K. Making graphene visible. Appl. Phys. Lett. 2007, 91, 063124.
Li, H.; Zhang, Q.; Yap, C. C. R.; Tay, B. K.; Edwin, T. H. T.; Olivier, A.; Baillargeat, D. From bulk to monolayer MoS2: Evolution of Raman scattering. Adv. Funct. Mater. 2012, 22, 1385–1390.
Ishigami, M.; Chen, J. H.; Cullen, W. G.; Fuhrer, M. S.; Williams, E. D. Atomic structure of graphene on SiO2. Nano Lett. 2007, 7, 1643–1648.
Wang, Q. H.; Kalantar-Zadeh, K.; Kis, A.; Coleman, J. N.; Strano, M. S. Electronics and optoelectronics of two-dimensional transition metal dichalcogenides. Nat. Nanotechnol. 2012, 7, 699–712.
Mak, K. F.; He, K. L.; Lee, C.; Lee, G. H.; Hone, J.; Heinz, T. F.; Shan, J. Tightly bound trions in monolayer MoS2. Nat. Mater. 2013, 12, 207–211.
Lopez-Sanchez, O.; Lembke, D.; Kayci, M.; Radenovic, A.; Kis, A. Ultrasensitive photodetectors based on monolayer MoS2. Nat. Nanotechnol. 2013, 8, 497–501
Fuhrer, M. S.; Hone, J. Measurement of mobility in dual-gated MoS2 transistors. Nat. Nanotechnol. 2013, 8, 146–147.
Dhaka, V.; Oksanen, J.; Jiang, H.; Haggren, T.; Nykänen, A.; Sanatinia, R.; Kakko, J. -P.; Huhtio, T.; Mattila, M.; Ruokolainen, J.; et al. Aluminum-induced photoluminescence red shifts in core–shell GaAs/AlxGa1–xAs nanowires. Nano Lett. 2013, 13, 3581–3588.
Cho, J. H.; Lee, J.; He, Y.; Kim, B. S.; Lodge, T. P.; Frisbie, C. D. High-capacitance ion gel gate dielectrics with faster polarization response times for organic thin film transistors. Adv. Mater. 2008, 20, 686–690.
Perera, M. M.; Lin, M. -W.; Chuang, H. -J.; Chamlagain, B. P.; Wang, C. Y.; Tan, X. B.; Cheng, M. M. -C.; Tománek, D.; Zhou, Z. X. Improved carrier mobility in few-layer MoS2 field-effect transistors with ionic-liquid gating. ACS Nano 2013, 7, 4449–4458.
Mak, K. F.; Lee, C.; Hone, J.; Shan, J.; Heinz, T. F. Atomically thin MoS2: A new direct-gap semiconductor. Phys. Rev. Lett. 2010, 105, 136805.
Chang, C. -C.; Chi, C. -Y.; Yao, M. Q.; Huang, N. F.; Chen, C. -C.; Theiss, J.; Bushmaker, A. W.; LaLumondiere, S.; Yeh, T. -W.; Povinelli, M. L.; et al. Electrical and optical characterization of surface passivation in GaAs nanowires. Nano Lett. 2012, 12, 4484–4489.
Offsey, S. D.; Woodall, J. M.; Warren, A. C.; Kirchner, P. D.; Chappell, T. I.; Pettit, G. D. Unpinned (100) GaAs-surfaces in air using photochemistry. Appl. Phys. Lett. 1986, 48, 475.
Yablonovitch, E.; Sandroff, C. J.; Bhat, R.; Gmitter, T. Nearly ideal electronic-properties of sulfide coated GaAs-surfaces. Appl. Phys. Lett. 1987, 51, 439–441.
Wilmsen, C. W.; Geib, K. M.; Shin, J.; Iyer, R.; Lile, D. L.; Pouch, J. J. The sulfurized InP surface. J. Vac. Sci. Technol. B 1989, 7, 851.