AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Dipole-moment-induced effect on contact electrification for triboelectric nanogenerators

Peng Bai1,2,§Guang Zhu1,§Yu Sheng Zhou1,§Sihong Wang1Jusheng Ma2Gong Zhang2Zhong Lin Wang1,3( )
School of Materials Science and EngineeringGeorgia Institute of TechnologyAtlantaGeorgia30332-0245USA
Department of Mechanical EngineeringTsinghua UniversityBeijing100084China
Beijing Institute of Nanoenergy and NanosystemsChinese Academy of SciencesBeijingChina

§ Authors with equal contribution and order of authors determined by coin toss.

Show Author Information

Graphical Abstract

Abstract

Triboelectric nanogenerators (TENGs) have been demonstrated as an effective way to harvest mechanical energy to drive small electronics. The density of triboelectric charges generated on contact surfaces between two distinct materials is a critical factor for dictating the output power. We demonstrate an approach to effectively tune the triboelectric properties of materials by taking advantage of the dipole moment in polarized polyvinylidene fluoride (PVDF), leading to substantial enhancement of the output power density of the TENG. The output voltage ranged from 72 V to 215 V under a constant contact force of 50 N. This work not only provides a new method of enhancing output power of TENGs, but also offers an insight into charge transfer in contact electrification by investigating dipole-moment-induced effects on the electrical output of TENGs.

Electronic Supplementary Material

Download File(s)
nr-7-7-990_ESM.pdf (1.5 MB)

References

1

Lowell, J.; Rose-Innes, A. C. Contact electrification. Adv. Phys. 1980, 29, 947–1023.

2

Harper, W. R. Contact and Frictional Electrification; Laplacian Press: Morgan Hill, 1998.

3

Horn, R. G.; Smith, D. T. Contact electrification and adhesion between dissimilar material. Science 1992, 256, 362–364.

4

Horn, R. G.; Smith, D. T.; Grabbe, A. Contact electrification induced by monolayer modification of a surface and relation to acid–base interactions. Nature 1993, 366, 442–443.

5

Pai, D. M.; Springett, B. E. Physics of electrophotography. Rev. Mod. Phys. 1993, 65, 163−211.

6

Liu, C. -Y.; Bard, A. J. Electrostatic electrochemistry at insulators. Nat. Mater. 2008, 7, 505–509.

7

Gibson, H. W. Control of electrical properties of polymers by chemical modification. Polymer 1984, 25, 3–27.

8

McCarty, L. S.; Whitesides, G. M. Electrostatic charging due to separation of ions at interfaces: Contact electrification of ionic electrets. Angew. Chem. Int. Ed. 2008, 47, 2188–2207.

9

Davies, D. K. Charge generation on dielectric surfaces. J. Phys. D: Appl. Phys. 1969, 2, 1533.

10

Diaz, A. F.; Guay, J. Contact charging of organic materials: Ion vs. electron transfer. IBM J. Res. Dev. 1993, 37, 249–260.

11

Schein, L. B. Electrophotography and Development Physics; Laplacian: Morgan Hill, 1996.

12

Burland, D. M.; Schein, L. B. Physics of electrophotography. Phys. Today 1986, 39, 46–53.

13

Grzybowski, B. A.; Winkleman, A.; Wiles, J. A.; Brumer, Y.; Whitesides, G. M. Electrostatic self-assembly of macroscopic crystals using contact electrification. Nat. Mater 2003, 2, 241–245.

14

Grzybowski, B. A.; Wiles, J. A.; Whitesides, G. M. Dynamics self-assembly of rings of charged metallic spheres. Phys. Rev. Lett. 2003, 90, 083903.

15

Kwetkus, B. A. Particle triboelectrification and its use in the electrostatic separation process. Part. Sci. Technol. 1998, 16, 55–68.

16

Fan, F. -R.; Lin, L.; Zhu, G.; Wu, W. Z.; Zhang, R.; Wang, Z. L. Transparent triboelectric nanogenerators and self-powered pressure sensors based on micropatterned plastic films. Nano Lett. 2012, 12, 3109–3114.

17

Zhu, G.; Pan, C. F.; Guo, W. X.; Chen, C. -Y.; Zhou, Y. S.; Yu, R. M.; Wang, Z. L. Triboelectric-generator-driven pulse electrodeposition for micropatterning. Nano Lett. 2012, 12, 4960–4965.

18

Wang, S. H.; Lin, L.; Wang, Z. L. Nanoscale triboelectric-effect-enabled energy conversion for sustainably powering portable electronics. Nano Lett. 2012, 12, 6339–6346.

19

Zhu, G.; Lin, Z. -H.; Jing, Q. S.; Bai, P.; Pan, C. F.; Yang, Y.; Zhou, Y. S.; Wang, Z. L. Toward large-scale energy harvesting by a nanoparticle-enhanced triboelectric nanogenerator. Nano Lett. 2013, 13, 847–853.

20

Xie, Y. N.; Wang, S. H.; Lin, L.; Jing, Q. S.; Lin, Z. -H.; Niu, S. M.; Wu, Z. Y.; Wang, Z. L. Rotary triboelectric nanogenerator based on a hybridized mechanism for harvesting wind energy. ACS Nano 2013, 7, 7119–7125.

21

Bai, P.; Zhu, G.; Liu, Y.; Chen, J.; Jing, Q. S.; Yang, W. Q.; Ma, J. S.; Zhang, G.; Wang, Z. L. Cylindrical rotating triboelectric nanogenerator. ACS Nano 2013, 7, 6361–6366.

22

Lin, L.; Wang, S. H.; Xie, Y. N.; Jing, Q. S.; Niu, S. M.; Hu, Y. F.; Wang, Z. L. Segmentally structured disk triboelectric nanogenerator for harvesting rotational mechanical energy. Nano Lett. 2013, 13, 2916–2923.

23

Yang, X. H.; Zhu, G.; Wang, S. H.; Zhang, R.; Lin, L.; Wu W. Z.; Wang, Z. L. A Self-powered electrochromic device driven by a nanogenerator. Energ. Environ. Sci. 2012, 5, 9462–9466.

24

Lin, Z. -H.; Zhu, G.; Zhou, Y. S.; Yang, Y.; Bai, P.; Chen, J.; Wang, Z. L. A Self-powered triboelectric nanosensor for mercury ion detection. Angew. Chem. Int. Ed. 2013, 52, 5065–5069.

25

Bai, P.; Zhu, G.; Lin, Z. -H.; Jing, Q. S.; Chen, J.; Zhang, G.; Ma, J. S.; Wang, Z. L. Integrated multilayered triboelectric nanogenerator for harvesting biomechanical energy from human motion. ACS Nano 2013, 7, 3713–3719.

26

Yang, Y.; Zhang, H. L.; Lee, S.; Kim, D.; Hwang, W.; Wang, Z. L. Hybrid energy cell for degradation of methyl orange by self-powered electrocatalytic oxidation. Nano Lett. 2013, 13, 803–808.

27

Kim, H.; Kim, S. M.; Son, H.; Kim, H.; Park, B.; Ku, J.; Sohn, J. I.; Im, K.; Jang, J. E.; Park, J. -J.; et al. Enhancement of piezoelectricity via electrostatic effects on a textile platform. Energ. Environ. Sci. 2012, 5, 8932–8936.

28

Harper, W. R. The Volta effect as a cause of static electrification. Proc. R. Soc. Lond. A 1951, 205, 83–103.

29

Lowell, J. Tunnelling between metals and insulators and its role in contact electrification. J. Phys. D: Appl. Phys. 1979, 12, 1541.

30

Davies, D. K. Charge generation on dielectric surfaces. J. Phys. D: Appl. Phys. 1969, 2, 1533.

31

Lowell, J. The electrification of polymers by metals. J. Phys. D: Appl. Phys. 1976, 9, 1571.

32

Grzybowski, B. A.; Fialkowski, M.; Wiles, J. A. Kinetics of contact electrification between metals and polymers. J. Phys. Chem. B 2005, 109, 20511–20515.

33

Xue, X. Y.; Wang, S. H.; Guo, W. X.; Zhang, Y.; Wang, Z. L. Hybridizing energy conversion and storage in a mechanical-to-electrochemical process for self-charging power cell. Nano Lett. 2012, 12, 5048–5054.

34

Lefki, K.; Dormans, G. J. M. Measurement of piezoelectric coefficients of ferroelectric thin films. J. Appl. Phys. 1994, 76, 1764.

35

Kalinin, S. V.; Bonnell, D. A. Local potential and polarization screening on ferroelectric surfaces. Phys. Rev. B 2001, 63, 125411.

36

Womes, M.; Bihler, E.; Eisenmenger, W. Dynamics of polarization growth and reversal in PVDF Films. IEEE Trans. Electr. Ins. 1989, 24, 461–468.

37

Palto, S.; Blinov, L.; Dubovik, E.; Fridkin, V.; Petukhova, N.; Sorokin, A.; Verkhovskaya, K.; Yudin, S. Ferroelectric Langmuir–Blodgett films. Ferroelectr. Lett. 1995, 19, 65–68.

38

Saurenbach, F.; Terris, B. D. Imaging of ferroelectric domain walls by force microscopy. Appl. Phys. Lett. 1990, 56, 1703.

39

Hong, J. W.; Park, S. -I; Khim, Z. G. Measurement of hardness, surface potential, and charge distribution with dynamic contact mode electrostatic force microscope. Rev. Sci. Instrum. 1999, 70, 1735.

Nano Research
Pages 990-997
Cite this article:
Bai P, Zhu G, Zhou YS, et al. Dipole-moment-induced effect on contact electrification for triboelectric nanogenerators. Nano Research, 2014, 7(7): 990-997. https://doi.org/10.1007/s12274-014-0461-8

602

Views

192

Crossref

N/A

Web of Science

192

Scopus

7

CSCD

Altmetrics

Received: 13 February 2014
Revised: 22 March 2014
Accepted: 27 March 2014
Published: 25 June 2014
© Tsinghua University Press and Springer-Verlag Berlin Heidelberg 2014
Return