AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

High-precision transfer-printing and integration of vertically oriented semiconductor arrays for flexible device fabrication

Mark Triplett1,2Hideki Nishimura4Matthew Ombaba1V. J. Logeeswarren1Matthew Yee1Kazim G. Polat1Jin Y. Oh1Takashi Fuyuki4François Léonard3M. Saif Islam1( )
Center for Nano and Micro ManufacturingDepartment of Electrical and Computer EngineeringUniversity of CaliforniaDavisCA95616USA
Department of PhysicsUniversity of CaliforniaDavisCA95616USA
Sandia National LaboratoriesLivermoreCA94551USA
Microelectronic Device Science LaboratoryNara Institute of Science and TechnologyJapan
Show Author Information

Graphical Abstract

Abstract

Flexible electronics utilizing single crystalline semiconductors typically require post-growth processes to assemble and incorporate the crystalline materials onto flexible substrates. Here we present a high-precision transfer-printing method for vertical arrays of single crystalline semiconductor materials with widely varying aspect ratios and densities enabling the assembly of arrays on flexible substrates in a vertical fashion. Complementary fabrication processes for integrating transferred arrays into flexible devices are also presented and characterized. Robust contacts to transferred silicon wire arrays are demonstrated and shown to be stable under flexing stress down to bending radii of 20 mm. The fabricated devices exhibit a reversible tactile response enabling silicon based, nonpiezoelectric, and flexible tactile sensors. The presented system leads the way towards high-throughput, manufacturable, and scalable fabrication of flexible devices.

Electronic Supplementary Material

Download File(s)
nr-7-7-998_ESM.pdf (996.7 KB)

References

1

McAlpine, M. C.; Ahmad, H.; Wang, D. W.; Heath, J. R. Highly ordered nanowire arrays on plastic substrates for ultrasensitive flexible chemical sensors. Nat. Mater. 2007, 6, 379–384.

2

Fan, Z. Y.; Ho, J. C.; Takahashi, T.; Yerushalmi, R.; Takei, K.; Ford, A. C.; Chueh, Y. L.; Javey, A. Toward the development of printable nanowire electronics and sensors. Adv. Mater. 2009, 21, 3730–3743.

3

Reuss, R. H.; Chalamala, B. R.; Moussessian, A.; Kane, M. G.; Kumar, A.; Zhang, D. C.; Rogers, J. A.; Hatalis, M.; Temple, D.; Moddel, G.; et al. Macroelectronics: Perspectives on technology and applications. Proc. IEEE. 2005, 93, 1239–1256.

4

Hoffmann, S.; Utke, I.; Moser, B.; Michler, J.; Christiansen, S. H.; Schmidt, V.; Senz, S.; Werner, P.; Gosele, U.; Ballif, C. Measurement of the bending strength of vapor–liquid–solid grown silicon nanowires. Nano. Lett. 2006, 6, 622–625.

5

Maiolo, J. R.; Kayes, B. M.; Filler, M. A.; Putnam, M. C.; Kelzenberg, M. D.; Atwater, H. A.; Lewis, N. S. High aspect ratio silicon wire array photoelectrochemical cells. J. Am. Chem. Soc. 2007, 129, 12346–12347.

6

Wang, X.; Peng, K. Q.; Pan, X. J.; Chen, X.; Yang, Y.; Li, L.; Meng, X. M.; Zhang, W. J.; Lee, S. T. High-performance silicon nanowire array photoelectrochemical solar cells through surface passivation and modification. Angew. Chem. Int. Ed. 2011, 50, 9861–9865.

7

Santori, E. A.; Maiolo, J. R.; Bierman, M. J.; Strandwitz, N. C.; Kelzenberg, M. D.; Brunschwig, B. S.; Atwater, H. A.; Lewis, N. S. Photoanodic behavior of vapor–liquid–solid-grown, lightly doped, crystalline Si microwire arrays. Energ. Environ. Sci. 2012, 5, 6867–6871.

8

Oh, I.; Kye, J.; Hwang, S. Enhanced photoelectrochemical hydrogen production from silicon nanowire array photocathode. Nano Lett. 2012, 12, 298–302.

9

Hochbaum, A. I.; Chen, R. K.; Delgado, R. D.; Liang, W. J.; Garnett, E. C.; Najarian, M.; Majumdar, A.; Yang, P. D. Enhanced thermoelectric performance of rough silicon nanowires. Nature 2008, 451, 163–167.

10

Boukai, A. I.; Bunimovich, Y.; Tahir-Kheli, J.; Yu, J. K.; Goddard, W. A.; Heath, J. R. Silicon nanowires as efficient thermoelectric materials. Nature 2008, 451, 168–171.

11

Fan, Z. Y.; Ho, J. C.; Jacobson, Z. A.; Yerushalmi, R.; Alley, R. L.; Razavi, H.; Javey, A. Wafer-scale assembly of highly ordered semiconductor nanowire arrays by contact printing. Nano Lett. 2008, 8, 20–25.

12

Whang, D.; Jin, S.; Wu, Y.; Lieber, C. M. Large-scale hierarchical organization of nanowire arrays for integrated nanosystems. Nano Lett. 2003, 3, 1255–1259.

13

Heo, K.; Cho, E.; Yang, J. E.; Kim, M. H.; Lee, M.; Lee, B. Y.; Kwon, S. G.; Lee, M. S.; Jo, M. H.; Choi, H. J.; et al. Large-scale assembly of silicon nanowire network-based devices using conventional microfabrication facilities. Nano Lett. 2008, 8, 4523–4527.

14

Meitl, M. A.; Zhu, Z. T.; Kumar, V.; Lee, K. J.; Feng, X.; Huang, Y. Y.; Adesida, I.; Nuzzo, R. G.; Rogers, J. A. Transfer printing by kinetic control of adhesion to an elastomeric stamp. Nat. Mater. 2006, 5, 33–38.

15

Sun, Y. G.; Rogers, J. A. Fabricating semiconductor nano/microwires and transfer printing ordered arrays of them onto plastic substrates. Nano Lett. 2004, 4, 1953–1959.

16

Baca, A. J.; Ahn, J. H.; Sun, Y. G.; Meitl, M. A.; Menard, E.; Kim, H. S.; Choi, W. M.; Kim, D. H.; Huang, Y.; Rogers, J. A. Semiconductor wires and ribbons for high-performance flexible electronics. Angew. Chem. Int. Ed. 2008, 47, 5524–5542.

17

Duan, X. F.; Niu, C. M.; Sahi, V.; Chen, J.; Parce, J. W.; Empedocles, S.; Goldman, J. L. High-performance thin-film transistors using semiconductor nanowires and nanoribbons. Nature 2003, 425, 274–278.

18

Goldberger, J.; Hochbaum, A. I.; Fan, R.; Yang, P. D. Silicon vertically integrated nanowire field effect transistors. Nano Lett. 2006, 6, 973–977.

19

Plass, K. E.; Filler, M. A.; Spurgeon, J. M.; Kayes, B. M.; Maldonado, S.; Brunschwig, B. S.; Atwater, H. A.; Lewis, N. S. Flexible polymer-embedded Si wire arrays. Adv. Mater. 2009, 21, 325–328.

20

Weisse, J. M.; Kim, D. R.; Lee, C. H.; Zheng, X. L. Vertical transfer of uniform silicon nanowire arrays via crack formation. Nano Lett. 2011, 11, 1300–1305.

21

Shiu, S. C.; Hung, S. C.; Chao, J. J.; Lin, C. F. Massive transfer of vertically aligned Si nanowire array onto alien substrates and their characteristics. Appl. Surf. Sci. 2009, 255, 8566–8570.

22

Logeeswaran, V. J.; Katzenmeyer, A. M.; Islam, M. S. Harvesting and transferring vertical pillar arrays of single-crystal semiconductor devices to arbitrary substrates. IEEE Trans. Electron. Dev. 2010, 57, 1856–1864.

23

Logeeswaran, V. J.; Oh, J.; Nayak, A. P.; Katzenmeyer, A. M.; Gilchrist, K. H.; Grego, S.; Kobayashi, N. P.; Wang, S. Y.; Talin, A. A.; Dhar, N. K.; et al. A perspective on nanowire photodetectors: Current status, future challenges, and opportunities. IEEE J. Sel. Top. Quant. 2011, 17, 1002–1032.

24

Sperling, L. H. Introduction to Physical Polymer Science; Wiley: Hoboken, NJ, USA, 2006.

25
Johnson, G. C.; Jones, P. T.; Wu, C. Y.; Honda, T. Determining the strength of brittle thin films for MEMS. In Mechanical Properties of Structural Films; ASTM International: West Conshohocken, PA, USA, 2001.
26

Sze, S. M.; Ng, K. K. Physics of Semiconductor Devices; John Wiley & Sons, Inc., 2007.

27
Zeghbroeck, B. V. Principles of Semiconductor Devices; Arailable at ecee. colorado. edu/~bart/book/(accessed December 10, 2013).https://doi.org/10.1533/9780857096326.10
28

Han, S. T.; Zhou, Y.; Roy, V. A. Towards the development of flexible non-volatile memories. Adv. Mater. 2013, 25, 5425–5449.

29

Wu, W.; Wen, X.; Wang, Z. L. Taxel-addressable matrix of vertical-nanowire piezotronic transistors for active/adaptive tactile imaging. Science 2013, 340, 952–957.

30

He, R. R.; Yang, P. D. Giant piezoresistance effect in silicon nanowires. Nat. Nanotechnol. 2006, 1, 42–46.

31

Callister, W. D. Materials Science and Engineering; Wiley: Hoboken, NJ, USA, 2007.

Nano Research
Pages 998-1006
Cite this article:
Triplett M, Nishimura H, Ombaba M, et al. High-precision transfer-printing and integration of vertically oriented semiconductor arrays for flexible device fabrication. Nano Research, 2014, 7(7): 998-1006. https://doi.org/10.1007/s12274-014-0462-7

650

Views

12

Crossref

N/A

Web of Science

11

Scopus

0

CSCD

Altmetrics

Received: 14 February 2014
Revised: 25 March 2014
Accepted: 27 March 2014
Published: 04 June 2014
© Tsinghua University Press and Springer-Verlag Berlin Heidelberg 2014
Return