Discover the SciOpen Platform and Achieve Your Research Goals with Ease.
Search articles, authors, keywords, DOl and etc.
To improve the contact between platinum catalyst and titanium substrate, a layer of TiO2 nanotube arrays has been synthesized before depositing Pt nanoflowers by pulse electrodeposition. Dramatic improvements in electrocatalytic activity (3×) and stability (60×) for methanol oxidation were found, suggesting promising applications in direct methanol fuel cells. The 3× and 60× improvements persist for Pt/Pd catalysts used to overcome the CO poisoning problem.
Steele, B. C. H.; Heinzel A. Materials for fuel cell technologies. Nature 2001, 414, 345–352.
Wu, J. B.; Yang, H. Synthesis and electrocatalytic oxygen reduction properties of truncated octahedral Pt3Ni nanoparticles. Nano Res. 2011, 4, 72–82.
Wang, X. G.; Zhang, Z. H.; Tang, B.; Lin, N. M.; Hou, H. L.; Ma, Y. A facile preparation of novel Pt-decorated Ti electrode for methanol electro-oxidation by high-energy micro-arc cladding technique. J. Power Sources 2013, 230, 81–88.
Tiwari, J. N.; Tiwari, R. N.; Lin, K. L. Controlled synthesis and growth of perfect platinum nanocubes using a pair of low-resistivity fastened silicon wafers and their electrocatalytic properties. Nano Res. 2011, 4, 541–549.
Lu, Y. C.; Xu, Z. C.; Gasteiger, H. A.; Chen, S.; Kimberly, H. S.; Yang, S. H. Platinum–gold nanoparticles: A highly active bifunctional electrocatalyst for rechargeable lithium–air batteries. J. Am. Chem. Soc. 2010, 132, 12170–12171.
Chen, Z.; Yu, A. P.; Higgins, D.; Li, H.; Wang, H. J.; Chen, Z. W. Highly active and durable core-corona structured bifunctional catalyst for rechargeable metal–air battery application. Nano Lett. 2012, 12, 1946–1952.
Dong, S. M.; Chen, X.; Wang, S.; Gu, L.; Zhang, L. X.; Wang, X. G.; Zhou, X. H.; Liu, Z. H.; Han, P. X.; Duan, Y. L., et al. 1D coaxial platinum/titanium nitride nanotue arrays with enhanced electrocatalytic activity for the oxygen reduction reaction: Towards Li–air batteries. ChemSusChem 2012, 5, 1712–1715.
Liu, H.; Xing, Y. C. Influence of Li ions on the oxygen reduction reaction of platinum electrocatalyst. Electrochem. Commun. 2011, 13, 646–649.
Shirahata, S.; Hamasaki, T.; Teruya, K. Advanced research on the health benefit of reduced water. Trends Food Sci. Tech. 2012, 23, 124–131.
Hamasaki, T.; Kashiwagi, T.; Imada, T.; Nakamichi, N.; Aramaki, S.; Toh, K.; Morisawa, S.; Shimakoshi, H.; Hisaeda, Y.; Shirahata, S. Kinetic analysis of superoxide anion radical-scavenging and hydroxyl radical-scavenging activities of platinum nanoparticles. Langmuir 2008, 24, 7354–7364.
Hauch, A.; Georg, A. Diffusion in the electrolyte and charge-transfer reaction at the platinum electrode in dye-sensitized solar cells. Electrochim. Acta 2001, 46, 3457–3466.
Fu, N. Q.; Fang, Y. Y.; Duan, Y. D.; Zhou, X. W.; Xiao, X. R.; Lin, Y. High-performance plastic platinized counter electrode via photoplatinization technique for flexible dye-sensitized solar cells. ACS Nano 2012, 6, 9596–9605.
Zhang, S.; Ji, C. Y.; Bian, Z. Q.; Yu, P. R.; Zhang, L. H.; Liu, D. Y.; Shi, E. Z.; Shang, Y. Y.; Peng, H. T.; Cheng, Q. Porous, platinum nanoparticles-adsorbed carbon nanotube yarns for efficient fiber solar cells. ACS Nano 2012, 6, 7191–7198.
Gong, Y.; Li, C. H.; Huang, X. M.; Luo, Y. H.; Li, D. M.; Meng, Q. B.; Iversen, B. B. Simple method for manufacturing Pt counter electrodes on conductive plastic substrates for dye-sensitized solar cells. ACS Appl. Mater. Inter. 2013, 5, 795–800.
Hrapovic, S.; Liu, Y. L.; Male, K. B.; Luong, J. H. T. Electrochemical biosensing platforms using platinum nanoparticles and carbon nanotubes. Anal. Chem. 2004, 76, 1083–1088.
Yang, M. H.; Yang, Y. H.; Liu, Y. L.; Shen, G. L.; Yu, R. Q. Platinum nanoparticles-doped sol–gel/carbon nanotubes composite electrochemical sensors and biosensors. Biosens. Bioelectron. 2006, 21, 1125–1131.
Guo, S. J.; Wen, D.; Zhai, Y. M.; Dong, S. J.; Wang, E. K. Platinum nanoparticles ensemble-on-graphene hybrid nanosheet: One-pot, rapid synthesis, and used as new electrode materials for electrochemical sensing. ACS Nano 2010, 4, 3959–3968.
Mondal, S.; Sangaranarayanan, M. V. A novel non-enzymatic sensor for urea using a polypyrrole-coated platinum electrode. Sens. Actuators B 2013, 177, 478–486.
Kloke, A.; von Stetten, F.; Zengerle, R.; Kerzenmacher, S. Strategies for the fabrication of porous platinum electrode. Adv. Mater. 2011, 23, 4976–5008.
Fu, G. T.; Wu, K.; Jiang, X.; Tao, L.; Chen, Y.; Lin, J.; Zhou, Y. M.; Wei, S. H.; Tang, Y. W.; Lu, T. H.; Xia, X. H. Polyallylamine-directed green synthesis of platinum nanocubes. Shape and electronic effect codependent enhanced electrocatalytic activity. Phys. Chem. Chem. Phys. 2013, 15, 3793–3802.
Xu, J. F.; Fu, G. T.; Tang, Y. W.; Zhou, Y. M.; Chen, Y.; Lu, T. H. One-pot synthesis of three-dimensional platinum nanochain networks as stable and active electrocatalysts for oxygen reduction reactions. J. Mater. Chem. 2012, 22, 13585–13590.
Gong, D. W.; Grimes, C. A.; Varghese, O. K.; Hu, W. C.; Singh, R. S.; Chen, Z.; Dickey, E. C. Titanium oxide nanotube arrays prepared by anodic oxidation. J. Mater. Res. 2001, 16, 3331–3334.
Yang, M. J.; Zhu, J. L.; Liu, W.; Sun, J. L. Novel photodetectors based on double-walled carbon nanotube film/TiO2 nanotube array heterodimensional contacts. Nano Res. 2011, 4, 901–907.
Kim, J. Y.; Noh, J. H.; Zhu, K.; Halverson, A. F.; Neale, N. R.; Park, S.; Hong, K. S.; Frank A. J. General strategy for fabricating transparent TiO2 nanotube arrays for dye-sensitized photoelectrodes: Illumination geometry and transport properties. ACS Nano 2011, 5, 2647–2656.
Macak, J. M.; Tsuchiya, H.; Taveira, L.; Aldabergerova, S.; Schmuki, P. Smooth anodic TiO2 nanotubes. Angew. Chem. Int. Ed. 2005, 44, 7463–7465.
Guo, W. X.; Xue, X. Y.; Wang, S. H.; Lin, C. J.; Wang, Z. L. An integrated power pack of dye-sensitized solar cell and Li battery based on double-sided TiO2 nanotube arrays. Nano Lett. 2012, 12, 2520–2523.
Richter, C.; Schuttenmaer, C. A. Exciton-like trap states limit electron mobility in TiO2 nanotubes. Nat. Nanotechnol. 2010, 5, 769–772.
Li, H. Y.; Bai, X. D.; Ling, Y. H.; Li, J.; Zhang, D. L.; Wang, J. S. Fabrication of titania nanotubes as cathode protection for stainless steel. Electrochem. Solid State Lett. 2006, 9, B28–B31.
Varghese, O. K.; Paulose, M.; Grimes, C. A. Long vertically aligned titania nanotubes on transparent conducting oxide for highly efficient solar cells. Nat. Nanotechnol. 2009, 4, 592–597.
Lei, Y. Z.; Zhao, G. H.; Tong, X. L.; Liu, M. C.; Li, D. M.; Geng, R. High electrocatalytic activity of Pt–Pd binary spherocrystals chemically assembled in vertically alinghed TiO2 nanotubes. ChemPhysChem. 2010, 11, 276–284.
Li, H. Y.; Wang, J. S.; Huang, K. L.; Sun, G. S.; Zhou, M. L. In-situ preparation of multi-layer TiO2 nanotube array thin films by anodic oxidation method. Mater. Lett. 2011, 65, 1188–1190.
Wang, N.; Li, H. Y.; Lv, W. L.; Li, J. H.; Wang, J. S.; Zhang, Z. T.; Liu, Y. R. Effects of TiO2 nanotubes with different diameters on gene expression and osseointegration of implants in minipigs. Biomaterials 2011, 32, 6900–6911.
Zhang, X. Y.; Dong, D. H.; Li, D.; Williams, T.; Wang, H. T.; Webley, P. A. Direct electrodeposition of Pt nanotube arrays and their enhanced electrocatalytic activities. Electrochem. Commun. 2009, 11, 190–193.
Nielsch, K.; Muller, F.; Li, A. P.; Gosele, U. Uniform nickel deposition into ordered alumina pores by pulsed electrodeposition. Adv. Mater. 2000, 12, 582–586.
Macak, J. M.; Gong, B. G.; Hueppe, M.; Schmuki, P. Filling of TiO2 nanotubes by self-doping and electrodeposition. Adv. Mater. 2007, 19, 3027–3031.
Song, Y. Y.; Gao, Z. D.; Schmuki, P. Highly uniform Pt nanoparticle decoration on TiO2 nanotube arrays: A refreshable platform for methanol electrooxidation. Electrochem. Commun. 2011, 13, 290–293.
Zhang, H. M.; Zhou, W. Q.; Du, Y. K.; Yang, P.; Wang, C. Y. One-step electrodeposition of platinum nanoflowers and their high efficient catalytic activity for methanol electro-oxidation. Electrochem. Commun. 2010, 12, 882–885.
Watanabe, M.; Motoo, S. Electrocatalysis by ad-atoms. 2. Enhancement of oxidation of methanol on platinum by ruthenium ad-atoms. J. Electroanal. Chem. 1975, 60, 267–273.
Lim, B.; Jiang, M. J.; Carmargo, P. H. C.; Cho, E. C.; Tao, J.; Lu, X. M.; Zhu, Y. M.; Xia, Y. N. Pd–Pt bimetallic nanodendrites with high activity for oxygen reduction. Science 2009, 324, 1302–1305.
Kim, G. B.; Jhi, S. H. Carbon monoxide-tolerant platinum nanoparticle catalysts on defect-engineered graphene. ACS Nano 2011, 5, 805–810.