Article Link
Collect
Submit Manuscript
Show Outline
Outline
Graphical Abstract
Abstract
Keywords
References
Show full outline
Hide outline
Research Article

Piezotronic effect enhanced Schottky-contact ZnO micro/nanowire humidity sensors

Guofeng Hu1,§Ranran Zhou1,§Ruomeng Yu2,§Lin Dong1Caofeng Pan1()Zhong Lin Wang1,2()
Beijing Institute of Nanoenergy and NanosystemsChinese Academy of SciencesBeijing100083China
School of Materials Science and EngineeringGeorgia Institute of TechnologyAtlantaGeorgia30332-0245USA

§ These authors contributed equally to this work.

Show Author Information

Graphical Abstract

View original image Download original image

Abstract

A ZnO micro/nanowire has been utilized to fabricate Schottky-contacted humidity sensors based on a metal–semiconductor–metal (M–S–M) structure. By means of the piezotronic effect, the signal level, sensitivity and sensing resolution of the humidity sensor were significantly enhanced when applying an external strain. Since a higher Schottky barrier markedly reduces the signal level, while a lower Schottky barrier decreases the sensor sensitivity due to increased ohmic transport, a 0.22% compressive strain was found to optimize the performance of the humidity sensor, with the largest responsivity being 1, 240%. The physical mechanism behind the observed mechanical–electrical behavior was carefully studied by using band structure diagrams. This work provides a promising way to significantly enhance the overall performance of a Schottky-contact structured micro/nanowire sensor.

References

1

Borini, S.; White, R.; Wei, D.; Astley, M.; Haque, S.; Spigone, E.; Harris, N.; Kivioja, J.; Ryhänen, T. Ultrafast graphene oxide humidity sensors. ACS Nano 2013, 7, 11166–11173.

2

Saeidi, N.; Strutwolf, J.; Marechal, A.; Demosthenous, A.; Donaldson, N. A capacitive humidity sensor suitable for CMOS integration. IEEE Sens. J. 2013, 13, 4487–4495.

3

Amin, E.; Bhuiyan, M.; Karmakar, N. C.; Winther-Jensen, B. Development of a low cost printable chipless RFID humidity sensor. IEEE Sens. J. 2014, 14, 140–149.

4

Wang, X. P.; Zhao, C. -L.; Li, J. H.; Jin, Y. X.; Ye, M. P.; Jin, S. Z. Multiplexing of PVA-coated multimode-fiber taper humidity sensors. Opt. Commun. 2013, 308, 11–14.

5

Hsueh, H. -T.; Chen, Y. -H.; Lin, Y. -D.; Lai, K. -C.; Chen, J. -W.; Wu, C. -L. Integration of flower-like ZnO nanostructures with crystalline-Si interdigitated back contact photovoltaic cell as a self-powered humidity sensor. Appl. Phys. Lett. 2013, 103, 213109.

6

Tahir, M.; Sayyad, M. H.; Clark, J.; Wahab, F.; Aziz, F.; Shahid, M.; Munawar, M. A.; Chaudry, J. A. Humidity, light and temperature dependent characteristics of Au/N-BuHHPDI/Au surface type multifunctional sensor. Sens. Actuators B 2014, 192, 565–571.

7

Cui, Y.; Lieber, C. M. Functional nanoscale electronic devices assembled using silicon nanowire building blocks. Science 2001, 291, 851–853.

8

Duan, X. F.; Huang, Y.; Cui, Y.; Wang, J. F.; Lieber, C. M. Indium phosphide nanowires as building blocks for nanoscale electronic and optoelectronic devices. Nature 2001, 409, 66–69.

9

Arnold, M. S.; Avouris, P.; Pan, Z. W.; Wang, Z. L. Field-effect transistors based on single semiconducting oxide nanobelts. J. Phys. Chem. B 2003, 107, 659–663.

10

Kuang, Q.; Lao, C. S.; Wang, Z. L.; Xie, Z. X.; Zheng, L. S. High-sensitivity humidity sensor based on a single SnO2 nanowire. J. Am. Chem. Soc. 2007, 129, 6070–6071.

11

Wei, T. -Y.; Yeh, P. -H.; Lu, S. -Y.; Wang, Z. L. Gigantic enhancement in sensitivity using Schottky contacted nanowire nanosensor. J. Am. Chem. Soc. 2009, 131, 17690–17695.

12

Zhou, J.; Gu, Y. D.; Hu, Y. F.; Mai, W. J.; Yeh, P. -H.; Bao, G.; Sood, A. K.; Polla, D. L.; Wang, Z. L. Gigantic enhancement in response and reset time of ZnO UV nanosensor by utilizing Schottky contact and surface functionalization. Appl. Phys. Lett. 2009, 94, 191103.

13

Yeh, P. -H.; Li, Z.; Wang, Z. L. Schottky-gated probe-free ZnO nanowire biosensor. Adv. Mater. 2009, 21, 4975–4978.

14

Yu, R. M.; Pan, C. F.; Chen, J.; Zhu, G.; Wang, Z. L. Enhanced performance of a ZnO nanowire-based self-powered glucose sensor by piezotronic effect. Adv. Funct. Mater. 2013, 23, 5868–5874.

15

Yu, R. M.; Pan, C. F.; Wang, Z. L. High performance of ZnO nanowire protein sensors enhanced by the piezotronic effect. Energ. Environ. Sci. 2013, 6, 494–499.

16

Pan, C. F.; Yu, R. M.; Niu, S. M.; Zhu, G.; Wang, Z. L. Piezotronic effect on the sensitivity and signal level of Schottky contacted proactive micro/nanowire nanosensors. ACS Nano 2013, 7, 1803–1810.

17

Zhang, Y.; Liu, Y.; Wang, Z. L. Fundamental theory of piezotronics. Adv. Mater. 2011, 23, 3004–3013.

18

Wang, Z. L. Piezopotential gated nanowire devices: piezotronics and piezo-phototronics. Nano Today 2010, 5, 540–552.

19

Wu, W. Z.; Pan, C. F.; Zhang, Y.; Wen, X. N.; Wang, Z. L. Piezotronics and piezo-phototronics—from single nanodevices to array of devices and then to integrated functional system. Nano Today 2013, 8, 619–642.

20

Gao, Y. F.; Wang, Z. L. Electrostatic potential in a bent piezoelectric nanowire. The fundamental theory of nanogenerator and nanopiezotronics. Nano Lett. 2007, 7, 2499–2505.

21

Wang, Z. L. Piezotronic and piezophototronic effects. J. Phys. Chem. Lett. 2010, 1, 1388–1393.

22

Yang, Q.; Liu, Y.; Pan, C. F.; Chen, J.; Wen, X. N.; Wang, Z. L. Largely enhanced efficiency in ZnO nanowire/p-polymer hybridized inorganic/organic ultraviolet light-emitting diode by piezo-phototronic effect. Nano Lett. 2013, 13, 607–613.

23

Pan, C. F.; Dong, L.; Zhu, G.; Niu, S. M.; Yu, R. M.; Yang, Q.; Liu, Y.; Wang, Z. L. High-resolution electroluminescent imaging of pressure distribution using a piezoelectric nanowire LED array. Nat. Photon. 2013, 7, 752–758.

24

Yang, Q.; Wu, Y. P.; Liu, Y.; Pan, C. F.; Wang, Z. L. Features of the piezo-phototronic effect on optoelectronic devices based on wurtzite semiconductor nanowires. Phys. Chem. Chem. Phys. 2014, 16, 2790–2800.

25

Liu, Y.; Yang, Q.; Zhang, Y.; Yang, Z. Y.; Wang, Z. L. Nanowire piezo-phototronic photodetector: theory and experimental design. Adv. Mater. 2012, 24, 1410–1417.

26

Dong, L.; Niu, S. M.; Pan, C. F.; Yu, R. M.; Zhang, Y.; Wang, Z. L. Piezo-phototronic effect of CdSe nanowires. Adv. Mater. 2012, 24, 5470–5475.

27

Liu, W. H.; Lee, M.; Ding, L.; Liu, J.; Wang, Z. L. Piezopotential gated nanowire–nanotube hybrid field-effect transistor. Nano Lett. 2010, 10, 3084–3089.

28

Zhou, Y. S.; Wang, K.; Han, W. H.; Rai, S. C.; Zhang, Y.; Ding, Y.; Pan, C. F.; Zhang, F.; Zhou, W. L.; Wang, Z. L. Vertically aligned CdSe nanowire arrays for energy harvesting and piezotronic devices. ACS Nano 2012, 6, 6478–6482.

29

Pan, C. F.; Niu, S. M.; Ding, Y.; Dong, L.; Yu, R. M.; Liu, Y.; Zhu, G.; Wang, Z. L. Enhanced Cu2S/CdS coaxial nanowire solar cells by piezo-phototronic effect. Nano Lett. 2012, 12, 3302–3307.

30

Starr, M. B.; Shi, J.; Wang, X. D. Piezopotential-driven redox reactions at the surface of piezoelectric materials. Angew. Chem. Int. Ed. 2012, 51, 5962–5966.

31

Yang, R. S.; Qin, Y.; Dai, L. M.; Wang, Z. L. Power generation with laterally packaged piezoelectric fine wires. Nat. Nanotechnol. 2009, 4, 34–39.

32

Janotti, A.; Van de Walle, C. G. Oxygen vacancies in ZnO. Appl. Phys. Lett. 2005, 87, 122102.

33

Schaub, R.; Thostrup, P.; Lopez, N.; Lægsgaard, E.; Stensgaard, I.; Nørskov, J. K.; Besenbacher, F. Oxygen vacancies as active sites for water dissociation on rutile TiO2(110). Phys. Rev. Lett. 2001, 87, 266104.

34

Zhou, J.; Fei, P.; Gu, Y. D.; Mai, W. J.; Gao, Y. F.; Yang, R. S.; Bao, G.; Wang, Z. L. Piezoelectric-potential-controlled polarity-reversible Schottky diodes and switches of ZnO wires. Nano Lett. 2008, 8, 3973–3977.

35

Geissler, P. L.; Dellago, C.; Chandler, D.; Hutter, J.; Parrinello, M. Autoionization in liquid water. Science 2001, 291, 2121–2124.

36

Dulub, O.; Meyer, B.; Diebold, U. Observation of the dynamical change in a water monolayer adsorbed on a ZnO surface. Phys. Rev. Lett. 2005, 95, 136101.

37

Du, Y.; Deskins, N. A.; Zhang, Z.; Dohnálek, Z.; Dupuis, M.; Lyubinetsky, I. Two pathways for water interaction with oxygen adatoms on TiO2(110). Phys. Rev. Lett. 2009, 102, 096102.

38

Yu, R. M.; Dong, L.; Pan, C. F.; Niu, S. M.; Liu, H. F.; Liu, W.; Chua, S.; Chi, D. Z.; Wang, Z. L. Piezotronic effect on the transport properties of GaN nanobelts for active flexible electronics. Adv. Mater. 2012, 24, 3532–3537.

39

Sze, S. M. Physics of Semiconductor Devices; John Wiley & Sons: New York, 1981.

40

Wang, Z. L. Nanopiezotronics. Adv. Mater. 2007, 19, 889–892.

41

Liu, Y.; Zhang, Z. Y.; Hu, Y. F.; Jin, C. H.; Peng, L. -M. Quantitative fitting of nonlinear current–voltage curves and parameter retrieval of semiconducting nanowire, nanotube and nanoribbon devices. J Nanosci. Nanotechnol. 2008, 8, 252–258.

42

Hu, H.; Ji, H. -F.; Sun, Y. The effect of oxygen vacancies on water wettability of a ZnO surface. Phys. Chem. Chem. Phys. 2013, 15, 16557–16565.

43

Wang, X. D.; Summers, C. J.; Wang, Z. L. Large-scale hexagonal-patterned growth of aligned ZnO nanorods for nano-optoelectronics and nanosensor arrays. Nano Lett. 2004, 4, 423–426.

44

Pan, C. F.; Zhu, J. The syntheses, properties and applications of Si, ZnO, metal, and heterojunction nanowires. J. Mater. Chem. 2009, 19, 869–884.

45

Zhu, G.; Zhou, Y. S.; Wang, S. H.; Yang, R. S.; Ding, Y.; Wang, X.; Bando, Y.; Wang, Z. L. Synthesis of vertically aligned ultra-long ZnO nanowires on heterogeneous substrates with catalyst at the root. Nanotechnology 2012, 23, 055604.

Nano Research
Pages 1083-1091
Cite this article:
Hu G, Zhou R, Yu R, et al. Piezotronic effect enhanced Schottky-contact ZnO micro/nanowire humidity sensors. Nano Research, 2014, 7(7): 1083-1091. https://doi.org/10.1007/s12274-014-0471-6
Metrics & Citations  
Article History
Copyright
Return