AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

SnO2@Co3O4 hollow nano-spheres for a Li-ion battery anode with extraordinary performance

Won-Sik KimYoon HwaHong-Chan KimJong-Hyun ChoiHun-Joon SohnSeong-Hyeon Hong( )
Department of Materials Science and Engineering and Research Institute of Advanced Materials Seoul National University Seoul 151-744 Republic of Korea
Show Author Information

Graphical Abstract

Abstract

SnO2@Co3O4 hollow nano-spheres have been prepared using the template-based sol-gel coating technique and their electrochemical performance as an anode for lithium-ion battery (LIB) was investigated. The size of synthesized hollow spheres was about 50 nm with the shell thickness of 7–8 nm. The fabricated SnO2@Co3O4 hollow nano-sphere electrode exhibited an extraordinary reversible capacity (962 mAh·g-1 after 100 cycles at 100 mA·g-1), good cyclability, and high rate capability, which was attributed to the Co-enhanced reversibility of the Li2O reduction reaction during cycling.

Electronic Supplementary Material

Download File(s)
12274_2014_475_MOESM1_ESM.pdf (2.9 MB)

References

1

Endo, M.; Kim, C.; Nishimura, K.; Fujino, T.; Miyashita, K. Recent development of carbon materials for Li ion batteries. Carbon 2000, 38, 183–197.

2

Winter, M.; Besenhard, J. O.; Spahr, M. E.; Novák, P. Insertion electrode materials for rechargeable lithium batteries. Adv. Mater. 1998, 10, 725–763.

3

Boukamp, B. A.; Lesh, G. C.; Huggins, R. A. All-solid lithium electrodes with mixed-conductor matrix. J. Electrochem. Soc. 1981, 128, 725–729.

4

Winter, M.; Besenhard, J. O. Electrochemical lithiation of tin and tin-based intermetallics and composites. Electrochim. Acta 1999, 45, 31–50.

5

Chang, W. -S.; Park, C. -M.; Kim, J. -H.; Kim, Y. -U.; Jeong, G.; Sohn, H. -J. Quartz (SiO2): A new energy storage anode material for Li-ion batteries. Energy Environ. Sci. 2012, 5, 6895–6899.

6

Courtney, I. A.; Dahn, J. R. Electrochemical and in situ X-ray diffraction studies of the reaction of lithium with tin oxide composites. J. Electrochem. Soc. 1997, 144, 2045– 2052.

7

Chen, J. S.; Lou, X. W. SnO2-based nanomaterials: Synthesis and application in lithium-ion batteries. Small 2013, 9, 1877–1893.

8

Kim, C.; Noh, M.; Choi, M.; Cho, J.; Park, B. Critical size of a nano SnO2 electrode for Li-secondary battery. Chem. Mater. 2005, 17, 3297–3301.

9

Ye, J.; Zhang, H.; Yang, R.; Li, X.; Qi, L. Morphology-controlled synthesis of SnO2 nanotubes by using 1D silica mesostructures as sacrificial templates and their applications in lithium-ion batteries. Small 2010, 6, 296–306.

10

Kim, W. -S.; Lee, B. -S.; Kim, D. -H.; Kim, H. -C.; Yu, W. -R.; Hong, S. -H. SnO2 nanotubes fabricated using electro-spinning and atomic layer deposition and their gas sensing performance. Nanotechnology 2010, 21, 245605.

11

Chan, C. K.; Peng, H.; Liu, G.; McIlwrath, K.; Zhang, X. F.; Huggins, R. A.; Cui, Y. High-performance lithium battery anodes using silicon nanowires. Nat. Nanotechnol. 2008, 3, 31–35.

12

Huang, J. Y.; Zhong, L.; Wang, C. M.; Sullivan, J. P.; Xu, W.; Zhang, L. Q.; Mao, S. X.; Hudak, N. S.; Liu, X. H.; Subramanian, A. et al. In situ observation of the electroc-hemical lithiation of a single SnO2 nanowire electrode. Science 2010, 330, 1515–1520.

13

Hong, Y. J.; Son, M. Y.; Kang, Y. C. One-pot facile synthesis of double-shelled SnO2 yolk–shell-structured powders by continuous process as anode materials for Li-ion batteries. Adv. Mater. 2013, 25, 2279–2283.

14

Yang, S.; Yue, W.; Zhu, J.; Ren, Y.; Yang, X. Graphene-based mesoporous SnO2 with enhanced electrochemical performance for lithium-ion natteries. Adv. Funct. Mater. 2013, 23, 3570–3576.

15

Han, S.; Jang, B.; Kim, T.; Oh, S. M.; Hyeon, T. Simple synthesis of hollow tin dioxide microspheres and their application to lithium-ion battery anodes. Adv. Funct. Mater. 2005, 15, 1845–1850.

16

Lou, X. W.; Wang, Y.; Yuan, C.; Lee, J. Y.; Archer. L. A. Template-free synthesis of SnO2 hollow nanostructures with high lithium storage capacity. Adv. Mater. 2006, 18, 2325–2329.

17

Kim, W. -S.; Hwa, Y.; Jeun, J. -H.; Sohn, H. -J.; Hong, S. -H. Synthesis of SnO2 nano hollow spheres and their size effects in lithium ion battery anode application. J. Power Sources 2013, 225, 108–112.

18

Poizot, P.; Laruelle, S.; Grugeon, S.; Dupont, L.; Tarascon, J. -M. Nano-sized transition-metal oxides as negative-electrode materials for lithium-ion batteries. Nature 2000, 407, 496– 499.

19

Lou, X. W.; Deng, D.; Lee, J. Y.; Feng, J.; Archer, L. A. Self-supported formation of needlelike Co3O4 nanotubes and their application as lithium-ion battery electrodes. Adv. Mater. 2008, 20, 258–262.

20

Laruelle, S.; Grugeon, S.; Poizot, P.; Dollé, M.; Dupont, L.; Tarascon, J. -M. On the origin of the extra electrochemical capacity displayed by MO/Li cells at low potential. J. Electrochem. Soc. 2002, 149, A627–A634.

21

Kang, Y. -M.; Song, M. -S.; Kim, J. -H.; Kim, H. -S.; Park, M. -S.; Lee, J. -Y.; Liu, H. K.; Dou, S. X. A study on the charge–discharge mechanism of Co3O4 as an anode for the Li ion secondary battery. Electrochim. Acta 2005, 50, 3667–3673.

22

Qi, Y.; Du, N.; Zhang, H.; Fan, X.; Yang, Y.; Yang, D. CoO/NiSix core–shell nanowire arrays as lithium-ion anodes with high rate capabilities. Nanoscale 2012, 4, 991–996.

23

Wu, Z. -S.; Ren, W.; Wen, L.; Gao, L.; Zhao, J.; Chen, Z.; Zhou, G.; Li, F.; Cheng, H. -M. Graphene anchored with Co3O4 nanoparticles as anode of lithium ion batteries with enhanced reversible capacity and cyclic performance. ACS Nano 2010, 4, 3187–3194.

24

Qi, Y.; Du, N.; Zhang, H.; Wang, J.; Yang, Y.; Yang, D. Nanostructured hybrid cobalt oxide/copper electrodes of lithium-ion batteries with reversible high-rate capabilities. J. Alloys Compd. 2012, 521, 83–89.

25

Wang, Y.; Xia, H.; Lu, L.; Lin, J. Y. Excellent performance in lithium-ion battery anodes: Rational synthesis of Co(CO3)0.5(OH)0.11H2O nanobelt array and its conversion into mesoporous and single-crystal Co3O4. ACS Nano 2010, 4, 1425–1432.

26

Chen, J. S.; Li, C. M.; Zhou, W. W.; Yan, Q. Y.; Archer, L. A.; Lou, X. W. One-pot formation of SnO2 hollow nanospheres and α-Fe2O3@SnO2 nanorattles with large void space and their lithium storage properties. Nanoscale 2009, 1, 280-285.

27

Wang, G.; Gao, X. P.; Shen, P. W. Hydrothermal synthesis of Co2SnO4 nanocrystals as anode materials for Li-ion batteries. J. Power Sources 2009, 192, 719–723.

28

Xing, L. -L.; Zhao, Y. -Y.; Zhao, J.; Nie, Y. -X.; Deng, P.; Wang, Q.; Xue, X. -Y. Facile synthesis and lithium storage performance of SnO2-Co3O4 core-shell nanoneedle arrays on copper foil. J. Alloys Compd. 2014, 586, 28-33.

29

Qi, Y.; Zhang, H.; Du, N.; Zhai, C.; Yang, D. Synthesis of Co3O4@SnO2@C core-shell nanorods with superior reversible lithium-ion storage. RSC Adv. 2012, 2, 9511-9516.

30

Stöber, W.; Fink, A.; Bohn, E. Controlled growth of monodisperse silica spheres in the micron size range. J. Colloid Interf. Sci. 1968, 26, 62-69.

31

Lou, X. W.; Yuan, C.; Archer, L. A. Shell-by-shell synthesis of tin oxide hollow colloids with nanoarchitectured walls: Cavity size tuning and functionalization. Small 2007, 3, 261-265.

32

Plank, N. O. V.; Snaith, H. J.; Ducati, C.; Bendall, J. S.; Schmidt-Mende, L.; Welland, M. E. A simple low temperature synthesis route for ZnO-MgO core-shell nanowires. Nanotechnology 2008, 19, 465603.

33

Qi, G.; Liu, Y.; Jiao, W.; Zhang, L. Template synthesis of β-Ni(OH)2 hollow microspheres through a hydrothermal process. Micro Nano Lett. 2010, 5, 278-281.

34

Qiu, Y.; Yu, J. Synthesis of titanium dioxide nanotubes from electrospun fiber templates. Solid State Commun. 2008, 148, 556-558.

35

Yim, S. D.; Kim, S. J.; Baik, J. H.; Nam, I. -S.; Mok, Y. S.; Lee, J. -H.; Cho, B. K.; Oh, S. H. Decomposition of urea into NH3 for the SCR process. Ind. Eng. Chem. Res. 2004, 43, 4856-4863.

36

Ye, Q. -L.; Yoshikawa, H.; Awaga, K. Magnetic and optical properties of submicron-size hollow spheres. Materials 2010, 3, 1244-1268.

37

Liu, Z.; Ma, R.; Osada, M.; Takada, K.; Sasaki, T. Selective and controlled synthesis of α- and β-cobalt hydroxides in highly developed hexagonal platelets. J. Am. Chem. Soc. 2005, 127, 13869–13874.

38

Carson, G. A.; Nassir, M. H.; Langell, M. A. Epitaxial growth of Co3O4 on CoO(100). J. Vac. Sci. Technol. A 1996, 14, 1637-1642.

39

Burriel, M.; Garcia, G.; Santiso, J.; Abrutis, A.; Saltyte, Z.; Figueras, A. Growth kinetics, composition, and morphology of Co3O4 thin films prepared by pulsed liquid-injection MOCVD. Chem. Vapor Depos. 2005, 11, 106-111.

40

Kim, D. H.; Kwon, J. -H.; Kim, M.; Hong, S. -H. Structural characteristics of epitaxial SnO2 films deposited on a- and m-cut sapphire by ALD. J. Crystal Growth 2011, 322, 33–37.

41

Lian, P.; Zhu, X.; Liang, S.; Li, Z.; Yang, W.; Wang, H. High reversible capacity of SnO2/graphene nanocomposite as an anode material for lithium-ion batteries. Electrochim. Acta 2011, 56, 4532–4539.

42

Lou, X. W.; Chen, J. S.; Chen, P.; L. Archer, A. One-pot synthesis of carbon-coated SnO2 nanocolloids with improved reversible lithium storage properties. Chem. Mater. 2009, 21, 2868–2874.

43

Hwa, Y.; Kim, W. -S.; Yu, B. -C.; Kim, H.; Hong, S. -H.; Sohn, H. -J. Reversible storage of Li-ion in nano-Si/SnO2 core–shell nanostructured electrode. J. Mater. Chem. A 2013, 1, 3733–3738.

44

Kilibarda, G.; Szabó, D. V.; Schlabach, S.; Winkler, V.; Bruns, M.; Hanemann, T. Investigation of the degradation of SnO2 electrodes for use in Li-ion cells. J. Power Sources 2013, 233, 139–147.

45

Larcher, D.; Sudant, G.; Leriche, J. -B.; Chabre, Y.; Tarascon, J. -M. The electrochemical reduction of Co3O4 in a lithium cell. J. Electrochem. Soc. 2002, 149, A234–A241.

46

Aravindan, V.; Jinesh, K. B.; Prabhakar, R. R.; Kale, V. S.; Madhavi, S., Atomic layer deposited (ALD) SnO2 anodes with exceptional cycleability for Li-ion batteries. Nano Energy 2013, 2, 720–725.

Nano Research
Pages 1128-1136
Cite this article:
Kim W-S, Hwa Y, Kim H-C, et al. SnO2@Co3O4 hollow nano-spheres for a Li-ion battery anode with extraordinary performance. Nano Research, 2014, 7(8): 1128-1136. https://doi.org/10.1007/s12274-014-0475-2

506

Views

122

Crossref

N/A

Web of Science

121

Scopus

0

CSCD

Altmetrics

Received: 28 January 2014
Revised: 02 April 2014
Accepted: 09 April 2014
Published: 17 July 2014
© Tsinghua University Press and Springer-Verlag Berlin Heidelberg 2014
Return