AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Polyacrylic acid sodium salt film entrapped Ag-nanocubes as molecule traps for SERS detection

Zhulin Huang1Guowen Meng1,2( )Qing Huang3Bin Chen1Fei Zhou1Xiaoye Hu1Yiwu Qian1Haibin Tang1Fangming Han1Zhaoqin Chu1
Key Laboratory of Materials Physics and Anhui Key Laboratory of Nanomaterials and NanostructuresInstitute of Solid State Physics, Chinese Academy of Sciences, P. O. Box 1129Hefei230031China
University of Science and Technology of ChinaHefei230026China
Key Laboratory of Ion Beam BioengineeringHefei Institutes of Physical Science, Chinese Academy of SciencesHefei230031China
Show Author Information

Graphical Abstract

Abstract

Surface-enhanced Raman spectroscopy (SERS) is a fast analytical technique for trace chemicals; however, it requires the active SERS-substrates to adsorb analytes, thus limiting target species to those with the desired affinity for substrates. Here we present networked polyacrylic acid sodium salt (PAAS) film entrapped Ag-nanocubes (denoted as Ag-nanocubes@PAAS) as an effective SERS-substrate for analytes with and without high affinity. Once the analyte aqueous solution is cast on the dry Ag-nanocubes@PAAS substrate, the bibulous PAAS becomes swollen forcing the Ag-nanocubes loose, while the analytes diffuse in the interstices among the Ag-nanocubes. When dried, the PAAS shrinks and pulls the Ag-nanocubes back to their previous aggregated state, while the PAAS network "detains" the analytes in the small gaps between the Ag-nanocubes for SERS detection. The strategy has been proven effective for not only singleanalytes but also multi-analytes without strong affinity for Ag, showing its potential in SERS-based simultaneous multi-analyte detection of both adsorbable and non-adsorbable pollutants in the environment.

Electronic Supplementary Material

Download File(s)
12274_2014_480_MOESM1_ESM.pdf (4.2 MB)

References

1

Kneipp, K.; Kneipp, H.; Itzkan, I.; Dasari, R. R.; Feld, M. S. Ultrasensitive chemical analysis by Raman spectroscopy. Chem. Rev. 1999, 99, 2957–2975.

2

Zhang, X. Y.; Zhao, J.; Whitney, A. V.; Elam, J. W.; Van Duyne, R. P. Ultrastable substrates for surface enhanced Raman spectroscopy: Al2O3 overlayers fabricated by atomic layer deposition yield improved anthrax biomarker detection. J. Am. Chem. Soc. 2006, 128, 10304–10309.

3

Shafer-Peltier, K. E.; Haynes, C. L.; Glucksberg, M. R.; van Duyne, R. P. Toward a glucose biosensor based on surface-enhanced Raman scattering. J. Am. Chem. Soc. 2003, 125, 588–593.

4

Liu, T. -Y.; Tsai, K. -T.; Wang, H. -H.; Chen, Y.; Chen, Y. -H.; Chao, Y. -C.; Chang, H. -H.; Lin, C. -H.; Wang, J. -K.; Wang, Y. -L. Functionalized arrays of Raman-enhancing nanoparticles for capture and culture-free analysis of bacteria in human blood. Nat. Commun. 2011, 2, 538.

5

Moskovits, M. Surface-enhanced spectroscopy. Rev. Mod. Phys. 1985, 57, 783–828.

6

Wang, Y. D.; Lu, N.; Wang, W. T.; Liu, L. X.; Feng, L.; Zeng, Z. F.; Li, H. B.; X, W. Q.; Wu, Z. J.; Hu, W. et al. Highly effective and reproducible surface-enhanced Raman scattering substrates based on Ag pyramidal arrays. Nano Res. 2013, 6, 159–166.

7

Cho, W. J.; Kim, Y.; Kim, J. K. Ultrahigh-density array of silver nanoclusters for SERS substrate with high sensitivity and excellent reproducibility. ACS Nano 2012, 6, 249–255.

8

Cecchini, M. P.; Turek, V. A.; Paget, J.; Kornyshev, A. A.; Edel, J. B. Self-assembled nanoparticle arrays for multiphase trace analyte detection. Nat. Mater. 2013, 12, 165–171.

9

Lim, D. -K.; Jeon, K. -S.; Kim, H. M.; Nam, J. -M.; Suh, Y. D. Nanogap-engineerable Raman-active nanodumbbells for single-molecule detection. Nat. Mater. 2010, 9, 60–67.

10

Li, W. Y.; Camargo, P. H. C.; Lu, X. M.; Xia, Y. N. Dimers of silver nanospheres: Facile synthesis and their use as hot spots for surface-enhanced Raman scattering. Nano Lett. 2009, 9, 485–490.

11

Rodríguez-Lorenzo, L.; Álvarez-Plubla, R. A.; Pastoriza-Santos, I.; Mazzucco, S.; Stéphan, O.; Kociak, M.; Liz-Marzán, L. M.; García de Abajo, F. J. Zeptomol detection through controlled ultrasensitive surface-enhanced Raman scattering. J. Am. Chem. Soc. 2009, 131, 4616–4618.

12

Lee, S. Y.; Hung, L.; Lang, G. S.; Cornett, J. E.; Mayergoyz, I. D.; Rabin, O. Dispersion in the SERS enhancement with silver nanocube dimers. ACS Nano 2010, 4, 5763–5772.

13

Rycenga, M; Xia, X. X.; Moran, C. H.; Zhou, F.; Qin, D.; Li, Z. -Y.; Xia. Y. N. Generation of hot spots with silver nanocubes for single-molecule detection by surface-enhanced Raman scattering. Angew. Chem. Int. Ed. 2011, 50, 5473–5477.

14

Yap. F. L.; Thoniyot, P.; Krishnan, S.; Krishnamoorthy S. Nanoparticle cluster arrays for high-performance SERS through directed self-assembly on flat substrates and on optical fibers. ACS Nano 2012, 6, 2056–2070.

15

Theiss, J.; Pavaskar, P.; Echternach, P. M.; Muller, R. E.; Cronin, S. B. Plasmonic nanoparticle arrays with nanometer separation for high-performance SERS substrates. Nano Lett. 2010, 10, 2749–2754.

16

Huang, Z. L.; Meng, G. W.; Huang, Q.; Yang, Y. J.; Zhu, C. H; Tang, C. L. Improved SERS performance from Au nanopillar arrays by abridging the pillar tip spacing by Ag sputtering. Adv. Mater. 2010, 22, 4136–4139.

17

Caldwell, J. D.; Glembocki, O.; Bezares, F. J.; Bassim, N. D.; Rendell, R. W.; Feygelson, M.; Ukaegbu, M.; Kasica, R.; Shirey, L.; Hosten, C. Plasmonic nanopillar arrays for large-area, high-enhancement surface-enhanced Raman scattering sensors. ACS Nano 2011, 5, 4046–4055.

18

Li, Z. B.; Meng, G. W.; Huang, Q.; Zhu, C. H.; Zhang, Z.; Li, X. D. Galvanic-cell-induced growth of Ag nanosheet-assembled structures as sensitive and reproducible SERS substrates. Chem. Eur. J. 2012, 18, 14948–14953.

19

Zhu, C. H; Meng, G. W.; Huang, Q.; Zhang, Z.; Xu, Q. L.; Liu, G. Q.; Huang, Z. L.; Chu, Z. Q. Ag nanosheet-assembled micro-hemispheres as effective SERS substrates. Chem. Commun. 2011, 47, 2709–2711.

20

Jones, C. L.; Bantz, K. C.; Haynes, C. L. Partition layer -modified substrates for reversible surface-enhanced Raman scattering detection of polycyclic aromatic hydrocarbons. Anal. Bioanal. Chem. 2009, 394, 303–311.

21

Alvarez-Puebla, R. A.; Liz-Marzán, L. M. Traps and cages for universal SERS detection. Chem. Soc. Rev. 2012, 41, 43–51.

22

Huang, Z. L.; Meng, G. W.; Huang, Q.; Chen, B.; Zhu, C. H.; Zhang, Z. Large-area Ag nanorod array substrates for SERS: AAO template-assisted fabrication, functionalization, and application in detection PCBs. J. Raman Spectrosc. 2013, 44, 240–246.

23

Guerrini, L.; Garcia-Ramos, J. V.; Domingo, C.; Sanchez-Cortes, S. Sensing polycyclic aromatic hydrocarbons with dithiocarbamate functionalized Ag nanoparticles by surface-enhanced Raman scattering. Anal. Chem. 2009, 81, 953–960.

24

Cao, Y. W. C.; Jin, R. C.; Mirkin, C. A. Nanoparticles with Raman spectroscopic fingerprints for DNA and RNA detection. Science 2002, 297, 1536–1540.

25

Álvarez-Puebla, R. A.; Contreras-Cáceres, R.; Pastoriza-Santos, I.; Pérez-Juste, J.; Liz-Marzán, L. M. Au@pNIPAM colloids as molecular traps for surface-enhanced, spectroscopic, ultra-sensitive analysis. Angew. Chem. Int. Ed. 2009, 48, 138–143.

26

Gehan. H.; Fillaud, L.; Chehimi, M. M.; Aubard, J.; Hohenau, A.; Felidj, N.; Mangeney, C. Thermo-induced electromagnetic coupling in gold/polymer hybrid plasmonic structures probed by surface-enhanced Raman scattering. ACS Nano 2010, 4, 6491–6500.

27

Abalde-Cela, S.; Ho, S.; Rodríguez-González, B.; Correa-Duarte M. A.; Álvarez-Puebla, R. A.; Liz-Marzán, L. M.; Kotov, N. A. Loading of exponentially grown LBL films with silver nanoparticles and their application to generalized SERS detection. Angew. Chem. Int. Ed. 2009, 48, 5326–5329.

28

Contreras-Cáceres, R.; Abalde-Cela, S.; Guardia-Girós, P.; Fernández-Barbero, A.; Pérez-Juste, J.; Álvarez-Puebla, R. A.; Liz-Marzán, L. M. Multifunctional microgel magnetic/optical traps for SERS ultradetection. Langmuir 2011, 27, 4520–4525.

29

Skrabalak, S. E.; Au, L.; Li, X. D.; Xia, Y. N. Facile synthesis of Ag nanocubes and Au nanocages. Nat. Protoc. 2007, 9, 2182–2190.

30

Tao, A. R.; Ceperley, D. P.; Sinsermsuksakul, P.; Neureuther, A. R.; Yang, P. D. Self-organized silver nanoparticles for three-dimensional plasmonic crystals. Nano Lett. 2008, 8, 4033–4038.

31
Weaver, J. H.; Frederikse, H. P. R. Optical properties of selected elements. In CRC Handbook of Chemistry and Physics. Lide, D. R., Ed; Taylor & Francis: New York, 2005; 134–135.
32

Liu, M. Z.; Guo, T. H. Preparation and swelling properties of crosslinked sodium polyacrylate. J. Appl. Polym. Sci. 2001, 82, 1515–1520.

33

Biswas, A.; Aktas, O. C.; Schürmann, U.; Saeed, U.; Zaporojtchenko, V.; Faupel, F.; Strunskus, T. Tunable multiple plasmon resonance wavelengths response from multicomponent polymer-metal nanocomposite systems. Appl. Phys. Lett. 2004, 84, 2655–2657.

34

Le Ru, E. C.; Blackie, E.; Meyer, M.; Etchegoin, P. G. Surface enhanced Raman scattering enhancement factors: A comprehensive study. J. Phys. Chem. C 2007, 111, 13794–13803.

35

Kneipp, K.; Wang, Y.; Kneipp, H.; Perelman, L. T.; Itzkan, I.; Dasari, R. R.; Feld, M. S. Single molecule detection using surface-enhanced Raman scattering (SERS). Phys. Rev. Lett. 1997, 78, 1667–1670.

36

Etchegoin, P. G.; Le Ru, E. C. A perspective on single molecule SERS: Current status and future challenges. Phys. Chem. Chem. Phys. 2008, 10, 6079–6089.

37

Liu, H. W.; Zhang, L.; Lang, X. Y.; Yamaguchi, Y.; Iwasaki, H.; Inouye, Y.; Xue, Q. K.; Chen, M. W. Single molecule detection from a large-scale SERS-active Au79Ag21 substrate. Sci. Rep. 2011, 1, 112.

38

Cheng, Y.; Dong, Y. Y.; Wu, J. H.; Yang, X. R.; Bai, H.; Zheng, H. Y.; Ren, D. M.; Zou, Y. D.; Li, M. Screening melamine adulterant in milk powder with laser Raman spectrometry. J. Food Compos. Anal. 2010, 23, 199–202.

39

Jiménez-Vázquez, H. A.; Tamariz, J.; James Cross, R. Binding energy in and equilibrium constant of formation for the dodecahedrane compounds He@C20H20 and Ne@C20H20. J. Phys. Chem. A 2001, 105, 1315–1319.

Nano Research
Pages 1177-1187
Cite this article:
Huang Z, Meng G, Huang Q, et al. Polyacrylic acid sodium salt film entrapped Ag-nanocubes as molecule traps for SERS detection. Nano Research, 2014, 7(8): 1177-1187. https://doi.org/10.1007/s12274-014-0480-5

541

Views

28

Crossref

N/A

Web of Science

29

Scopus

6

CSCD

Altmetrics

Received: 26 November 2013
Revised: 13 April 2014
Accepted: 20 April 2014
Published: 24 June 2014
© Tsinghua University Press and Springer-Verlag Berlin Heidelberg 2014
Return