AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Te-seeded growth of few-quintuple layer Bi2Te3 nanoplates

Yanyuan Zhao1Maria de la Mata2Richard L. J. Qiu3Jun Zhang1Xinglin Wen1Cesar Magen4Xuan P. A. Gao3Jordi Arbiol2,5( )Qihua Xiong1,6( )
Division of Physics and Applied PhysicsSchool of Physical and Mathematical SciencesNanyang Technological UniversitySingapore637371
Institut de Ciència de Materials de BarcelonaICMAB-CSIC, E-08193, Bellaterra, CATSpain
Department of PhysicsCase Western Reserve UniversityCleveland, Ohio44106USA
Laboratorio de Microscopías Avanzadas (LMA)Instituto de Nanociencia de Aragon (INA) — ARAID and Departamento de Fisica de la Materia CondensadaUniversidad de Zaragoza50018Zaragoza, Spain
Institució Catalana de Recerca i Estudis Avançats (ICREA)08010Barcelona, CAT, Spain
NOVITAS, Nanoelectronics Centre of ExcellenceSchool of Electrical and Electronic Engineering, Nanyang Technological UniversitySingapore639798
Show Author Information

Graphical Abstract

Abstract

We report on a Te-seeded epitaxial growth of ultrathin Bi2Te3 nanoplates (down to three quintuple layers (QL)) with large planar sizes (up to tens of micrometers) through vapor transport. Optical contrast has been systematically investigated for the as-grown Bi2Te3 nanoplates on the SiO2/Si substrates, experimentally and computationally. The high and distinct optical contrast provides a fast and convenient method for the thickness determination of few-QL Bi2Te3 nanoplates. By aberration-corrected scanning transmission electron microscopy, a hexagonal crystalline structure has been identified for the Te seeds, which form naturally during the growth process and initiate an epitaxial growth of the rhombohedralstructured Bi2Te3 nanoplates. The epitaxial relationship between Te and Bi2Te3 is identified to be perfect along both in-plane and out-of-plane directions of the layered nanoplate. Similar growth mechanism might be expected for other bismuth chalcogenide layered materials.

Electronic Supplementary Material

Download File(s)
12274_2014_487_MOESM1_ESM.pdf (1 MB)

References

1

Butler, S. Z.; Hollen, S. M.; Cao, L.; Cui, Y.; Gupta, J. A.; Gutiérrez, H. R.; Heinz, T. F.; Hong, S. S.; Huang, J.; Ismach, A. F.; et al. Progress, challenges, and opportunities in two-dimensional materials beyond graphene. ACS Nano 2013, 7, 2898-2926.

2

Koski, K. J.; Cui, Y. The new skinny in two-dimensional nanomaterials. ACS Nano 2013, 7, 3739-3743.

3

Feng, J.; Sun, X.; Wu, C. Z.; Peng, L. L.; Lin, C. W.; Hu, S. L.; Yang, J. L.; Xie, Y. Metallic few-layered VS2 ultrathin nanosheets: High two-dimensional conductivity for in-plane supercapacitors. J. Am. Chem. Soc. 2011, 133, 17832-17838.

4

Nolas, G. S.; Sharp, J.; Goldsmid, H. J. Thermoelectrics: Basic Principles and New Materials Developments; Springer: New York, 2001.

5

Zhang, H. J.; Liu, C. -X.; Qi, X. -L.; Dai, X.; Fang, Z.; Zhang, S. -C. Topological insulators in Bi2Se3, Bi2Te3 and Sb2Te3 with a single Dirac cone on the surface. Nat. Phys. 2009, 5, 438-442.

6

Xia, Y.; Qian, D.; Hsieh, D.; Wray, L.; Pal, A.; Lin, H.; Bansil, A.; Grauer, D.; Hor, Y. S.; Cava, R. J.; et al. Observation of a large-gap topological-insulator class with a single Dirac cone on the surface. Nat. Phys. 2009, 5, 398-402.

7

Hasan, M. Z.; Kane, C. L. Colloquium: Topological insulators. Rev. Mod. Phys. 2010, 82, 3045.

8

Žutić, I.; Fabian, J.; Das Sarma, S. Spintronics: Fundamentals and applications. Rev. Mod. Phys. 2004, 76, 323-410.

9

Moore, J. Topological insulators: The next generation. Nat. Phys. 2009, 5, 378-380.

10

Zhang, Y.; He, K.; Chang, C. -Z.; Song, C. -L.; Wang, L. -L.; Chen, X.; Jia, J. -F.; Fang, Z.; Dai, X.; Shan, W. -Y. Crossover of the three-dimensional topological insulator Bi2Se3 to the two-dimensional limit. Nat. Phys. 2010, 6, 584-588.

11

Liu, Y.; Bian, G.; Miller, T.; Bissen, M.; Chiang, T. C. Topological limit of ultrathin quasi-free-standing Bi2Te3 films grown on Si(111). Phys. Rev. B 2012, 85, 195442.

12

Peng, H. L.; Lai, K. J.; Kong, D. S.; Meister, S.; Chen, Y. L.; Qi, X. -L.; Zhang, S. -C.; Shen, Z. -X.; Cui, Y. Aharonov-Bohm interference in topological insulator nanoribbons. Nat. Mater. 2010, 9, 225-229.

13

Xiu, F. X.; He, L.; Wang, Y.; Cheng, L.; Chang, L. -T.; Lang, M.; Huang, G.; Kou, X. F.; Zhou, Y.; Jiang, X. W.; et al. Manipulating surface states in topological insulator nanoribbons. Nat. Nanotechnol. 2011, 6, 216-221.

14

Kong, D. S.; Chen, Y. L.; Cha, J. J.; Zhang, Q. F.; Analytis, J. G.; Lai, K. J.; Liu, Z. K.; Hong, S. S.; Koski, K. J.; Mo, S. -K.; et al. Ambipolar field effect in the ternary topological insulator (BixSb1-x)2Te3 by composition tuning. Nat. Nanotechnol. 2011, 6, 705-709.

15

Yuan, H. T.; Liu, H. W.; Shimotani, H.; Guo, H.; Chen, M. W.; Xue, Q. K.; Iwasa, Y. Liquid-gated ambipolar transport in ultrathin films of a topological insulator Bi2Te3. Nano Lett. 2011, 11, 2601-2605.

16

Wang, Z. H.; Qiu, R. L. J.; Lee, C. H.; Zhang, Z.; Gao, X. P. A. Ambipolar surface conduction in ternary topological insulator Bi2(Te1-xSex)3 nanoribbons. ACS Nano 2013, 7, 2126-2131.

17

Min, Y.; Roh, J. W.; Yang, H.; Park, M.; Kim, S. I.; Hwang, S.; Lee, S. M.; Lee, K. H.; Jeong, U. Surfactant-free scalable synthesis of Bi2Te3 and Bi2Se3 nanoflakes and enhanced thermoelectric properties of their nanocomposites. Adv. Mater. 2013, 25, 1425-1429.

18

Soni, A.; Yanyuan, Z.; Ligen, Y.; Aik, M. K. K.; Dresselhaus, M. S.; Xiong, Q. H. Enhanced thermoelectric properties of solution grown Bi2Te3-xSex nanoplatelet composites. Nano Lett. 2012, 12, 1203-1209.

19

Son, J. S.; Choi, M. K.; Han, M. -K.; Park, K.; Kim, J. -Y.; Lim, S. J.; Oh, M.; Kuk, Y.; Park, C.; Kim, S. -J.; et al. n-Type nanostructured thermoelectric materials prepared from chemically synthesized ultrathin Bi2Te3 nanoplates. Nano Lett. 2012, 12, 640-647.

20

Soni, A.; Shen, Y.; Yin, M.; Zhao, Y.; Yu, L.; Hu, X.; Dong, Z. L.; Khor, K. A.; Dresselhaus, M. S.; Xiong, Q. H. Interface driven energy filtering of thermoelectric power in spark plasma sintered Bi2Te2.7Se0.3 nanoplatelet composites. Nano Lett. 2012, 12, 4305-4310.

21

Scheele, M.; Oeschler, N.; Veremchuk, I.; Reinsberg, K. -G.; Kreuziger, A. -M.; Kornowski, A.; Broekaert, J.; Klinke, C.; Weller, H. ZT enhancement in solution-grown Sb(2-x)BixTe3 nanoplatelets. ACS Nano 2010, 4, 4283-4291.

22

Wagner, V.; Dolling, G.; Powell, B. M.; Landweher, G. Lattice vibrations of Bi2Te3. Phys. Stat. Solidi B 1978, 85, 311-317.

23

Hong, S. S.; Kundhikanjana, W.; Cha, J. J.; Lai, K.; Kong, D.; Meister, S.; Kelly, M. A.; Shen, Z. -X.; Cui, Y. Ultrathin topological insulator Bi2Se3 nanoribbons exfoliated by atomic force microscopy. Nano Lett. 2010, 10, 3118-3122.

24

Teweldebrhan, D.; Goyal, V.; Balandin, A. A. Exfoliation and characterization of bismuth telluride atomic quintuples and quasi-two-dimensional crystals. Nano Lett. 2010, 10, 1209-1218.

25

Cheng, P.; Song, C. L.; Zhang, T.; Zhang, Y. Y.; Wang, Y. L.; Jia, J. -F.; Wang, J.; Wang, Y. Y.; Zhu, B. -F.; Chen, X.; et al. Landau quantization of topological surface states in Bi2Se3. Phys. Rev. Lett. 2010, 105, 076801.

26

Kong, D. S.; Dang, W. H.; Cha, J. J.; Li, H.; Meister, S.; Peng, H. L.; Liu, Z. F.; Cui, Y. Few-layer nanoplates of Bi2Se3 and Bi2Te3 with highly tunable chemical potential. Nano Lett. 2010, 10, 2245-2250.

27

Dang, W. H.; Peng, H. L.; Li, H.; Wang, P.; Liu, Z. F. Epitaxial heterostructures of ultrathin topological insulator nanoplate and graphene. Nano Lett. 2010, 10, 2870-2876.

28

Li, H.; Cao, J.; Zheng, W. S.; Chen, Y. L.; Wu, D.; Dang, W. H.; Wang, K.; Peng, H. L.; Liu, Z. F. Controlled synthesis of topological insulator nanoplate arrays on mica. J. Am. Chem. Soc. 2012, 134, 6132-6135.

29

Lee, C. H.; He, R.; Wang, Z. H.; Qiu, R. L. J.; Kumar, A.; Delaney, C.; Beck, B.; Kidd, T. E.; Chancey, C. C.; Sankaran, R. M.; et al. Metal-insulator transition in variably doped (Bi1-xSbx)2Se3 nanosheets. Nanoscale 2013, 5, 4337-4343.

30

Min, Y.; Moon, G. D.; Kim, B. S.; Lim, B.; Kim, J. -S.; Kang, C. Y.; Jeong, U. Quick, controlled synthesis of ultrathin Bi2Se3 nanodiscs and nanosheets. J. Am. Chem. Soc. 2012, 134, 2872-2875.

31

Peng, H. L.; Dang, W. H.; Cao, J.; Chen, Y. L.; Wu, D.; Zheng, W. S.; Li, H.; Shen, Z. -X.; Liu, Z. F. Topological insulator nanostructures for near-infrared transparent flexible electrodes. Nat. Chem. 2012, 4, 281-286.

32

Yan, Y.; Liao, Z. -M.; Zhou, Y. -B.; Wu, H. -C.; Bie, Y. -Q.; Chen, J. -J.; Meng, J.; Wu, X. -S.; Yu, D. -P. Synthesis and quantum transport properties of Bi2Se3 topological insulator nanostructures. Sci. Rep. 2013, 3, 1264.

33

Blake, P.; Hill, E. W.; Neto, A. H. C.; Novoselov, K. S.; Jiang, D.; Yang, R.; Booth, T. J.; Geim, A. K. Making graphene visible. Appl. Phys. Lett. 2007, 91, 063124.

34

Zhao, Y. Y.; Chua, K. T. E.; Gan, C. K.; Zhang, J.; Peng, B.; Peng, Z. P.; Xiong, Q. H. Phonons in Bi2S3 nanostructures: Raman scattering and first-principles studies. Phys. Rev. B 2011, 84, 205330.

35

Utama, M. I. B.; Peng, Z. P.; Chen, R.; Peng, B.; Xu, X. L.; Dong, Y.; Wong, L. M.; Wang, S. J.; Sun, H. D.; Xiong, Q. H. Vertically aligned cadmium chalcogenide nanowire arrays on muscovite mica: A demonstration of epitaxial growth strategy. Nano Lett. 2010, 11, 3051-3057.

36

Zhang, J.; Peng, Z. P.; Soni, A.; Zhao, Y. Y.; Xiong, Y.; Peng, B.; Wang, J. B.; Dresselhaus, M. S.; Xiong, Q. H. Raman spectroscopy of few-quintuple layer topological insulator Bi2Se3 nanoplatelets. Nano Lett. 2011, 11, 2407- 2414.

37

Zhao, Y. Y.; Luo, X.; Li, H.; Zhang, J.; Araujo, P. T.; Gan, C. K.; Wu, J.; Zhang, H.; Quek, S. Y.; Dresselhaus, M. S.; et al. Interlayer breathing and shear modes in few-trilayer MoS2 and WSe2. Nano Lett. 2013, 13, 1007-1015.

38

Li, Z. G.; Qin, Y. Y.; Mu, Y. W.; Chen, T. S.; Xu, C. H.; He, L. B.; Ding, W. F.; Wan, J. G.; Song, F. Q.; Han, M. et al. Visualizing topological insulating Bi2Te3 quintuple layers on SiO2-capped Si substrates and its contrast optimization. J. Nanosci. Nanotechnol. 2011, 11, 7042-7046.

39

Jung, I.; Pelton, M.; Piner, R.; Dikin, D. A.; Stankovich, S.; Watcharotone, S.; Hausner, M.; Ruoff, R. S. Simple approach for high-contrast optical imaging and characterization of graphene-based sheets. Nano Lett. 2007, 7, 3569-3575.

40

Palik, E. D. Handbook of Optical Constants of Solids; Elsevier Science & Tech, 1985.

41

Greenaway, D. L.; Harbeke, G. Band structure of bismuth telluride, bismuth selenide and their respective alloys. J. Phys. Chem. Solids 1965, 26, 1585-1604.

42

Aspnes, D. E.; Studna, A. A. Dielectric functions and optical parameters of Si, Ge, GaP, GaAs, GaSb, InP, InAs, and InSb from 1.5 to 6.0 eV. Phys. Rev. B 1983, 27, 985-1009.

43

Cheng, L. N.; Chen, Z. -G.; Yang, L.; Han, G.; Xu, H. -Y.; Snyder, G. J.; Lu, G. -Q.; Zou, J. T-shaped Bi2Te3-Te heteronanojunctions: Epitaxial growth, structural modeling, and thermoelectric properties. J. Phys. Chem. C 2013, 117, 12458-12464.

44
Mineralogy Database. http://webmineral.com/)[Online] (accessed on 26 April, 2014)
45

Wang, W. S.; Goebl, J.; He, L.; Aloni, S.; Hu, Y. X.; Zhen, L.; Yin, Y. D. Epitaxial growth of shape-controlled Bi2Te3-Te heterogeneous nanostructures. J. Am. Chem. Soc. 2010, 132, 17316-17324.

46

Boncheva-Mladenova, Z.; Pashinkin, A. S.; Novoselova, A. V. Determination of the saturated vapor pressure of solid bismuth telluride. Inorg. Mater. Engl. Transl. 1968, 4, 241.

47

Gorbov, S. I.; Krestovnikov, A. N. Thermodynamic properties of the gaseous chalcogenides of group V elements. Russ. J. Phys. Chem. 1966, 40, 505-507.

48

Kashkooli, I. Y.; Munir, Z. A. The equilibrium and free surface sublimation pressures of oriented single crystals of bismuth telluride. J. Electrochem. Soc. 1970, 117, 248-250.

49

Brebrick, R.; Smith, F. Partial and total vapor pressures over molten Bi2Te3. J. Electrochem. Soc. 1971, 118, 991-996.

50

Elliott, R. P. Constitution of Binary Alloys, First Supplement; McGraw-Hill Company: New York, 1965.

51

Grillo, V.; Rossi, F. STEM_CELL: A software tool for electron microscopy. Part 2 analysis of crystalline materials. Ultramicroscopy 2013, 125, 112-129.

52

Levi, A. C.; Kotrla, M. Theory and simulation of crystal growth. J. Phys. : Condens. Matt. 1997, 9, 299.

53

Medlin, D.; Ramasse, Q.; Spataru, C.; Yang, N. Structure of the (0001) basal twin boundary in Bi2Te3. J. Appl. Phys. 2010, 108, 043517.

54

Medlin, D. L.; Yang, N. Y. C. Interfacial step structure at a (0001) basal twin in Bi2Te3. J. Electron. Mater. 2012, 41, 1456-1464.

Nano Research
Pages 1243-1253
Cite this article:
Zhao Y, de la Mata M, Qiu RLJ, et al. Te-seeded growth of few-quintuple layer Bi2Te3 nanoplates. Nano Research, 2014, 7(9): 1243-1253. https://doi.org/10.1007/s12274-014-0487-y

591

Views

20

Crossref

N/A

Web of Science

19

Scopus

2

CSCD

Altmetrics

Received: 16 February 2014
Revised: 26 April 2014
Accepted: 27 April 2014
Published: 16 August 2014
© Tsinghua University Press and Springer‐Verlag Berlin Heidelberg 2014
Return