AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

In situ generated thrombin in the protein corona of zeolites: Relevance of the functional proteins to its biological impact

Yunlong Li1Xiaofeng Liao1Xiaoxi Zhang2Guicen Ma1Shuai Zuo2Liping Xiao1Galen D. Stucky3Zhugang Wang4Xian Chen2,5Xiaoqiang Shang1Jie Fan1( )
Key Lab of Applied Chemistry of Zhejiang ProvinceZhejiang UniversityHangzhou310027China
Department of ChemistryFudan UniversityShanghai200433China
Department of Chemistry and BiochemistryUniversity of CaliforniaSanta BarbaraCA93106USA
Department of Medical GeneticsShanghai Jiao Tong University School of MedicineShanghai200025China
Department of Biochemistry and BiophysicsSchool of MedicineUniversity of North CarolinaChapel HillNC27599USA
Show Author Information

Graphical Abstract

Abstract

Adsorption of plasma proteins to nanomaterial surfaces has a great influence on their bio-functionality. However, there is limited understanding of the relationship between the functional proteins in the protein corona and the biological identity of the materials. Here we show that the in situ generated thrombin in the protein corona of a Ca-zeolite surface displays a calcium-dependent, unusually high (~3, 000 NIH U/mg) procoagulant activity, which is even stable against antithrombin deactivation. Removing the encapsulated Ca2+ in the zeolites leads to deactivation by antithrombin. Our observations suggest that the thrombin activity can be regulated by the inorganic surface and cations. Most importantly, our discovery indicates the link between the biomolecules in the protein corona and the procoagulant activity of the materials, providing a new molecular basis for the procoagulant mechanism for zeolite hemostatics.

Electronic Supplementary Material

Download File(s)
12274_2014_505_MOESM1_ESM.pdf (2 MB)

References

1

Ne, A. E.; Madler, L.; Velegol, D.; Xia, T.; Hoek, E. M. V.; Somasundaran, P. Understanding biophysicochemical interactions at the nano-bio interface. Nat. Mater. 2009, 8, 543–557.

2

Tenzer, S.; Docter, D.; Kuharev, J.; Musyanovych, A.; Fetz, V.; Hecht, R. Rapid formation of plasma protein corona critically affects nanoparticle pathophysiology. Nat. Nanotechnol. 2013, 8, 772–781.

3

Cedervall, T.; Lynch, I.; Foy, M.; Berggad, T.; Donnelly, S. C.; Cagney, G. Detailed identification of plasma proteins adsorbed on copolymer nanoparticles. Angew. Chem. Int. Ed. 2007, 46, 5754–5756.

4

Lundqvist, M.; Stigler, J.; Elia, G.; Lynch, I.; Cedervall, T.; Dawson, K. A. Nanoparticle size and surface properties determine the protein corona with possible implications for biological impacts. Proc. Natl. Acad. Sci. USA 2008, 105, 14265–14270.

5

Casals, E.; Pfaller, T.; Duschl, A.; Oostingh, G. J.; Puntes, V. Time evolution of the nanoparticle protein corona. ACS Nano. 2010, 4, 3623–3632.

6

Lundqvist, M.; Stigler, J.; Cedervall, T.; Berggard, T.; Flanagan, M. B.; Lynch, I. The evolution of the protein corona around nanoparticles: A test study. ACS Nano. 2011, 5, 7503–7509.

7

Monopoli, M. P.; Walczyk, D.; Campbell, A.; Elia, G.; Lynch, I.; Bombelli, F. B. Physical-chemical aspects of protein corona: Relevance to in vitro and in vivo biological impacts of nanoparticles. J. Am. Chem. Soc. 2011, 133, 2525–2534.

8

Tenzer, S.; Docter, D.; Rosfa, S.; Wlodarski, A.; Kuharev, J.; Rekik, A. Nanoparticle size is a critical physicochemical determinant of the human blood plasma corona: A comprehensive quantitative proteomic analysis. ACS Nano. 2011, 5, 7155–7167.

9

Walkey, C. D.; Olsen, J. B.; Guo, H. B.; Emili, A.; Chan, W. C. W. Nanoparticle size and surface chemistry determine serum protein adsorption and macrophage uptake. J. Am. Chem. Soc. 2012, 134, 2139–2147.

10

Walkey, C. D.; Chan, W. C. W. Understanding and controlling the interaction of nanomaterials with proteins in a physiological environment. Chem. Soc. Rev. 2012, 41, 2780–2799.

11

Lesniak, A.; Salvati, A.; Santos-Martinez, M. J.; Radomski, M. W.; Dawson, K. A; Aberg, C. Nanoparticle adhesion to the cell membrane and its effect on nanoparticle uptake efficiency. J. Am. Chem. Soc. 2013, 135, 1438–1444.

12

Monopoli, M. P.; Aberg, C.; Salvati, A.; Dawson, K. A. Biomolecular coronas provide the biological identity of nanosized materials. Nat. Nanotechnol. 2012, 7, 779–7786.

13

Casals, E.; Puntes, V. F. Inorganic nanoparticle biomolecular corona: Formation, evolution and biological impact. Nanomedicine. 2012, 7, 1917–1930.

14

Wang, F.; Yu, L.; Monopoli, M. P. Sandin, P.; Mahon, E.; Salvati, A. The biomolecular corona is retained during nanoparticle uptake and protects the cells from the damage induced by cationic nanoparticles until degraded in the lysosomes. Nanomed: Nanotechnol. 2013, 9, 1159–1168.

15

Cedervall, T.; Lynch, I.; Lindman, S.; Berggard, T.; Thulin, E.; Nilsson, H. Understanding the nanoparticle-protein corona using methods to quantify exchange rates and affinities of proteins for nanoparticles. Proc. Natl. Acad. Sci. USA 2007, 104, 2050–2055.

16

Deng, Z. J.; Liang, M. T.; Monteiro, M.; Toth, I.; Minchin, R. F. Nanoparticle-induced unfolding of fibrinogen promotes Mac-1 receptor activation and inflammation. Nat. Nanotech. 2010, 6, 39–44.

17

Setyawati, M. I.; Tay, C. Y.; Chia, S. L.; Goh, S. L.; Fang, W.; Neo, M. J. Titanium dioxide nanomaterials cause endothelial cell leakiness by disrupting the homophilic interaction of VE-cadherin. Nat. Commun. 2013, 4, 1673.

18

Climent, M. J.; Corma, A.; Iborra, S. Heterogeneous catalysts for the one-pot synthesis of chemicals and fine chemicals. Chem. Rev. 2011, 111, 1072–1133.

19

Achneck, H. E.; Sileshi, B.; Jamiolkowski, R. M.; Albala, D. M.; Shapiro, M. L.; Lawson, J. H. A comprehensive review of topical hemostatic agents efficacy and recommendations for use. Ann. Surg. 2010, 251, 217–228.

20

Gruen, R. L.; Brohi, K.; Schreiber, M.; Balogh, Z. J.; Pitt, V.; Narayan, M. Haemorrhage control in severely injured patients. Lancet. 2012, 380, 1099–1108.

21

Alam, H. B.; Chen, Z.; Jaskille, A.; Querol, R.; Koustova, E.; Inocencio, R.; Conran, R.; Seufert, A.; Ariaban, N.; Toruno, K. et al. Application of a zeolite hemostatic agent achieves 100% survival in a lethal model of complex groin injury in swine. J. Trauma. 2004, 56, 974–983.

22

Lynch, I.; Salvati, A.; Dawson, K. A. Protein-nanoparticle interactions: What does the cell see? Nat. Nanotechnol. 2009, 4, 546–547.

23

Nielsen, S. P. The biological role of strontium. Bone 2004, 35, 583–588.

24

Soler-illia, G. J. D.; Sanchez, C.; Lebeau, B.; Patarin, J. Chemical strategies to design textured materials: From microporous and mesoporous oxides to nanonetworks and hierarchical structures. Chem. Rev. 2002, 102, 4093–4138.

25

Tosheva, L.; Valtchev, V. P. Nanozeolites: Synthesis, crystallization mechanism, and applications. Chem. Mater. 2005, 17, 2494–2513.

26

Baker, S. E.; Sawvel, A. M.; Zheng, N.; Stucky, G. D. Controlling bioprocesses with inorganic surfaces: Layered clay hemostatic agents. Chem. Mater. 2007, 19, 4390–4392.

27

Margolis, J. The kaolin clotting time-a rapid one-stage method for diagnosis of coagulation defects. J. Clin. Pathol. 1958, 11, 406–409.

28

Muszbek, L.; Bereczky, Z.; Bagoly, Z.; Komaromi, I.; Katona, E. Factory XIII: A coagulation factor with multiple plasmonic and cellular functions. Physiol. Rev. 2011, 91, 931–972.

29

Milani, S.; Bombelli, F. B.; Pitek, A. S.; Dawson, K. A.; Radler, J. Reversible versus irreversible binding of transferrin to polystyrene nanoparticles: Soft and hard corona. ACS Nano. 2012, 6, 2532–2541.

30

Rock, G.; Neurath, D.; Semple, E.; Harvey, M.; Freedman, M. Preparation and characterization of human thrombin for use in a fibrin glue. Transfusion. Med. 2007, 17, 187–191.

31

Gunawardena, H. P.; Huang, Y.; Kenjale, R.; Wang, H. Y.; Xie, L.; Chen, X. A. Unambiguous characterization of site-specific phosphorylation of leucine-rich repeat fli-I-interacting protein 2 (LRRFIP2) in toll-like receptor 4 (TLR4)-mediated signaling. J. Biol. Chem. 2011, 286, 10897–10910.

32

Zhang, H. Z.; Maria, K. E. B.; Luna, L.; Brianne, O. P.; Kim, J. S.; Qian, W. J.; Moore, R. J.; Alejandro, H. L.; Bobbie, M.; Brian, W. R. et al. Quantitative proteomics analysis of adsorbed plasma proteins classifies nanoparticles with different surface properties and size. Proteomics. 2011, 11, 4569–4577.

33

Baker, S. E.; Sawvel, A. M.; Fan, J.; Shi, Q.; Strandwitz, N.; Stucky, G. D. Blood clot initiation by mesocellular foams: Dependence on nanopore size and enzyme immobilization. Langmuir 2008, 24, 14254–14260.

34

Lane, D. A.; Caso, R. Antithrombin: Structure, genomic organization, function and inherited deficiency. Baillière's Clinical Haematology. 1989, 2, 961–998.

35

Sommeijer, D.; van Oerle, R.; Reitsma, P.; Timmerman, J.; Meijers, J.; Spronk, H. Analysis of blood coagulation in mice: Pre-analytical conditions and evaluation of a home-made assay for thrombin-antithrombin complexes. Thrombosis J. 2005, 3, 12.

36

Frigola, A. Standardisation of a simple method for the determination of antithrombin activity. J. Clin. Pathol. 1977, 30, 881–883.

37

Shukla, A.; Fang, J. C.; Puranam, S.; Jensen, F. R.; Hammond, P. T. Hemostatic Multilayer Coatings. Adv. Mater. 2012, 24, 492.

38

Li, Y. L.; Li, H.; Xiao, L. P.; Zhou, L.; Shentu, J. Z.; Zhang, X. M. Hemostatic efficiency and wound healing properties of natural zeolite granules in a lethal rabbit model of complex groin injury. Materials 2012, 5, 2586–2596.

39

Lynch, I.; Dawson, K. A.; Linse, S. Detecting cryptic epitopes created by nanoparticles. Sci. STKE, 2006, 327, pe14.

40

Xia, X. R.; Monteiro-Riviere, N. A.; Riviere, J. E. An index for characterization of nanomaterials in biological systems. Nat. Nanotechnol. 2010, 5, 671–675.

Nano Research
Pages 1457-1465
Cite this article:
Li Y, Liao X, Zhang X, et al. In situ generated thrombin in the protein corona of zeolites: Relevance of the functional proteins to its biological impact. Nano Research, 2014, 7(10): 1457-1465. https://doi.org/10.1007/s12274-014-0505-0

683

Views

33

Crossref

N/A

Web of Science

37

Scopus

1

CSCD

Altmetrics

Received: 23 April 2014
Revised: 29 May 2014
Accepted: 29 May 2014
Published: 31 July 2014
© Tsinghua University Press and Springer‐Verlag Berlin Heidelberg 2014
Return