Discover the SciOpen Platform and Achieve Your Research Goals with Ease.
Search articles, authors, keywords, DOl and etc.
Carbohydrates constitute the most abundant organic matter in nature, serving as structural components and energy sources, and mediating a wide range of cellular activities. The emergence of nanomaterials with distinct optical, magnetic, and electronic properties has witnessed a rapid adoption of these materials for biomedical research and applications. Nanomaterials of various shapes and sizes having large specific surface areas can be used as multivalent scaffolds to present carbohydrate ligands. The resulting glyconanomaterials effectively amplify the glycan-mediated interactions, making it possible to use these materials for sensing, imaging, diagnosis, and therapy. In this review, we summarize the synthetic strategies for the preparation of various glyconanomaterials. Examples are given where these glyconanomaterials have been used in sensing and differentiation of proteins and cells, as well as in imaging glycan-medicated cellular responses.
Brandley, B. K.; Schnaar, R. L. Cell-surface carbohydrates in cell recognition and response. J. Leukocyte Biol. 1986, 40, 97–111.
Sharon, N. Lectin-carbohydrate complexes of plants and animals: An atomic view. Trends Biochem. Sci. 1993, 18, 221–226.
Bucior, I.; Burger, M. M. Carbohydrate-carbohydrate interactions in cell recognition. Curr. Opin. Struct. Biol. 2004, 14, 631–637.
Lasky, L. Selectins: Interpreters of cell-specific carbohydrate information during inflammation. Science 1992, 258, 964–969.
Smith, A. E.; Helenius, A. How viruses enter animal cells. Science 2004, 304, 237–242.
Kwong, P. D.; Wyatt, R.; Robinson, J.; Sweet, R. W.; Sodroski, J.; Hendrickson, W. A. Structure of an HIV gp120 envelope glycoprotein in complex with the CD4 receptor and a neutralizing human antibody. Nature 1998, 393, 648–659.
Glabe, C. G.; Grabel, L. B.; Vacquier, V. D.; Rosen, S. D. Carbohydrate specificity of sea urchin sperm bindin: A cell surface lectin mediating sperm-egg adhesion. J. Cell Biol. 1982, 94, 123–128.
Takada, A.; Ohmori, K.; Yoneda, T.; Tsuyuoka, K.; Hasegawa, A.; Kiso, M.; Kannagi, R. Contribution of carbohydrate antigens sialyl lewis A and sialyl lewis X to adhesion of human cancer cells to vascular endothelium. Cancer Res. 1993, 53, 354–361.
Kannagi, R. Carbohydrate-mediated cell adhesion involved in hematogenous metastasis of cancer. Glycoconjugate J. 1997, 14, 577–584.
Wang, X.; Ramström, O.; Yan, M. Quantitative analysis of multivalent ligand presentation on gold glyconanoparticles and the impact on lectin binding. Anal. Chem. 2010, 82, 9082–9089.
Wang, X.; Ramström, O.; Yan, M. Glyconanomaterials: Synthesis, characterization, and ligand presentation. Adv. Mater. 2010, 22, 1946–1953.
Wang, X.; Matei, E.; Deng, L. Q.; Ramström, O.; Gronenborn, A. M.; Yan, M. Multivalent glyconanoparticles with enhanced affinity to the anti-viral lectin Cyanovirin-N. Chem. Commun. 2011, 47, 8620–8622.
Wang, X.; Ramström, O.; Yan, M. Dynamic light scattering as an efficient tool to study glyconanoparticle-lectin interactions. Analyst 2011, 136, 4174–4178.
Wang, X.; Matei, E.; Gronenborn, A. M.; Ramström, O.; Yan, M. Direct measurement of glyconanoparticles and lectin interactions by isothermal titration calorimetry. Anal. Chem. 2012, 84, 4248–4252.
Wang, X.; Matei, E.; Deng, L. Q.; Koharudin, L.; Gronenborn, A. M.; Ramström, O.; Yan, M. Sensing lectin-glycan interactions using lectin super-microarrays and glycans labeled with dye-doped silica nanoparticles. Biosens. Bioelectron. 2013, 47, 258–264.
Jayaraman, N. Multivalent ligand presentation as a central concept to study intricate carbohydrate-protein interactions. Chem. Soc. Rev. 2009, 38, 3463–3483.
Mahon, E.; Aastrup, T.; Barboiu, M. Multivalent recognition of lectins by glyconanoparticle systems. Chem. Commun. 2010, 46, 5491–5493.
Liang, C. H.; Wang, C. C.; Lin, Y. C.; Chen, C. H.; Wong, C. H.; Wu, C. Y. Iron oxide/gold core/shell nanoparticles for ultrasensitive detection of carbohydrate-protein interactions. Anal. Chem. 2009, 81, 7750–7756.
Marradi, M.; Di Gianvincenzo, P.; Enríquez-Navas, P. M.; Martínez-ávila, O. M.; Chiodo, F.; Yuste, E.; Angulo, J.; Penadés, S. Gold nanoparticles coated with oligomannosides of HIV-1 glycoprotein gp120 mimic the carbohydrate epitope of antibody 2G12. J. Mol. Biol. 2011, 410, 798–810.
Varma, A. J.; Kennedy, J. F.; Galgali, P. Synthetic polymers functionalized by carbohydrates: A review. Carbohydr. Polym. 2004, 56, 429–445.
Voit, B.; Appelhans, D. Glycopolymers of various architectures-more than mimicking nature. Macromol. Chem. Phys. 2010, 211, 727–735.
Sunasee, R.; Narain, R. Glycopolymers and glyco-nanoparticles in biomolecular recognition processes and vaccine development. Macromol. Biosci. 2013, 13, 9–27.
Ahmed, M.; Wattanaarsakit, P.; Narain, R. Recent advances in the preparation of glycopolymer bioconjugates. Eur. Polym. J. 2013, 49, 3010–3033.
Yilmaz, G.; Becer, C. R. Precision glycopolymers and their interactions with lectins. Eur. Polym. J. 2013, 49, 3046–3051.
Chabre, Y. M.; Roy, R. Recent trends in glycodendrimer syntheses and applications. Curr. Top. Med. Chem. 2008, 8, 1237–1285.
Shiao, T. C.; Roy, R. Glycodendrimers as functional antigens and antitumor vaccines. New J. Chem. 2012, 36, 324–339.
Hatano, K.; Matsuoka, K.; Terunuma, D. Carbosilane glycodendrimers. Chem. Soc. Rev. 2013, 42, 4574–4598.
Khan, S. A.; Adak, A.; Vasudeva Murthy, R.; Kikkeri, R. Recent advances in the metallo-glycodendrimers and its potential applications. Inorg. Chim. Acta 2014, 409, 26–33.
Kitamoto, D.; Morita, T.; Fukuoka, T.; Konishi, M. A.; Imura, T. Self-assembling properties of glycolipid biosurfactants and their potential applications. Curr. Opin. Colloid Interface Sci. 2009, 14, 315–328.
Hashim, R.; Sugimura, A.; Minamikawa, H.; Heidelberg, T. Nature-like synthetic alkyl branched-chain glycolipids: A review on chemical structure and self-assembly properties. Liq. Cryst. 2011, 39, 1–17.
Jayaraman, N.; Maiti, K.; Naresh, K. Multivalent glycoliposomes and micelles to study carbohydrate-protein and carbohydrate-carbohydrate interactions. Chem. Soc. Rev. 2013, 42, 4640–4656.
Lemarchand, C.; Gref, R.; Couvreur, P. Polysaccharide-decorated nanoparticles. Eur. J. Pharm. Biopharm. 2004, 58, 327–341.
Dias, A. M. G. C.; Hussain, A.; Marcos, A. S.; Roque, A. C. A. A biotechnological perspective on the application of iron oxide magnetic colloids modified with polysaccharides. Biotechnol. Adv. 2011, 29, 142–155.
Covaliu, C.; Berger, D.; Matei, C.; Diamandescu, L.; Vasile, E.; Cristea, C.; Ionita, V.; Iovu, H. Magnetic nanoparticles coated with polysaccharide polymers for potential biomedical applications. J. Nanopart. Res. 2011, 13, 6169–6180.
Lam, C. W.; James, J. T.; McCluskey, R.; Arepalli, S.; Hunter, R. L. A review of carbon nanotube toxicity and assessment of potential occupational and environmental health risks. Crit. Rev. Toxicol. 2006, 36, 189–217.
Chen, X.; Lee, G. S.; Zettl, A.; Bertozzi, C. R. Biomimetic engineering of carbon nanotubes by using cell surface mucin mimics. Angew. Chem. Int. Ed. 2004, 43, 6111–6116.
Chen, X.; Tam, U. C.; Czlapinski, J. L.; Lee, G. S.; Rabuka, D.; Zettl, A.; Bertozzi, C. R. Interfacing carbon nanotubes with living cells. J. Am. Chem. Soc. 2006, 128, 6292–6293.
Khiar, N.; Leal, M. P.; Baati, R.; Ruhlmann, C.; Mioskowski, C.; Schultz, P.; Fernandez, I. Tailoring carbon nanotube surfaces with glyconanorings: New bionanomaterials with specific lectin affinity. Chem. Commun. 2009, 4121–4123.
Feng, W.; Luo, R. M.; Xiao, J.; Ji, P. J.; Zheng, Z. G. Self-assembly of sugar-based amphiphile on carbon nanotubes for protein adsorption. Chem. Eng. Sci. 2011, 66, 4807–4813.
Murthy, B. N.; Zeile, S.; Nambiar, M.; Nussio, M. R.; Gibson, C. T.; Shapter, J. G.; Jayaraman, N.; Voelcker, N. H. Self assembly of bivalent glycolipids on single walled carbon nanotubes and their specific molecular recognition properties. RSC Adv. 2012, 2, 1329–1333.
Wu, P.; Chen, X.; Hu, N.; Tam, U. C.; Blixt, O.; Zettl, A.; Bertozzi, C. R. Biocompatible carbon nanotubes generated by functionalization with glycodendrimers. Angew. Chem. Int. Ed. 2008, 47, 5022–5025.
Sudibya, H. G.; Ma, J. M.; Dong, X. C.; Ng, S.; Li, L. J.; Liu, X. W.; Chen, P. Interfacing glycosylated carbon-nanotube-network devices with living cells to detect dynamic secretion of biomolecules. Angew. Chem. Int. Ed. 2009, 48, 2723–2726.
Chen, Q. S.; Wei, W. L.; Lin, J. M. Homogeneous detection of concanavalin A using pyrene-conjugated maltose assembled graphene based on fluorescence resonance energy transfer. Biosens. Bioelectron. 2011, 26, 4497–4502.
Chen, Y. N.; Vedala, H.; Kotchey, G. P.; Audfray, A.; Cecioni, S.; Imberty, A.; Vidal, S.; Star, A. Electronic detection of lectins using carbohydrate-functionalized nanostructures: Graphene versus carbon nanotubes. ACS Nano 2011, 6, 760–770.
Kuzmany, H.; Kukovecz, A.; Simon, F.; Holzweber, M.; Kramberger, C.; Pichler, T. Functionalization of carbon nanotubes. Synth. Met. 2004, 141, 113–122.
Georgakilas, V.; Otyepka, M.; Bourlinos, A. B.; Chandra, V.; Kim, N. D.; Kemp, K. C.; Hobza, P.; Zboril, R.; Kim, K. S. Functionalization of graphene: Covalent and non-covalent approaches, derivatives and applications. Chem. Rev. 2012, 112, 6156–6214.
Park, J.; Yan, M. Covalent functionalization of graphene with reactive intermediates. Acc. Chem. Res. 2012, 46, 181–189.
Prato, M. [60]Fullerene chemistry for materials science applications. J. Mater. Chem. 1997, 7, 1097–1109.
Wudl, F. Fullerene materials. J. Mater. Chem. 2002, 12, 1959–1963.
Gorityala, B. K.; Ma, J. M.; Wang, X.; Chen, P.; Liu, X. W. Carbohydrate functionalized carbon nanotubes and their applications. Chem. Soc. Rev. 2010, 39, 2925–2934.
Chen, Y. N.; Star, A.; Vidal, S. Sweet carbon nanostructures: Carbohydrate conjugates with carbon nanotubes and graphene and their applications. Chem. Soc. Rev. 2013, 42, 4532–4542.
Pinson, J.; Podvorica, F. Attachment of organic layers to conductive or semiconductive surfaces by reduction of diazonium salts. Chem. Soc. Rev. 2005, 34, 429–439.
Ragoussi, M. E.; Casado, S.; Ribeiro-Viana, R.; de la Torre, G.; Rojo, J.; Torres, T. Selective carbohydrate-lectin interactions in covalent graphene- and SWCNT-based molecular recognition systems. Chem. Sci. 2013, 4, 4035–4041.
Hong, S. Y.; Tobias, G.; Al-Jamal, K. T.; Ballesteros, B.; Ali-Boucetta, H.; Lozano-Perez, S.; Nellist, P. D.; Sim, R. B.; Finucane, C.; Mather, S. J. et al. Filled and glycosylated carbon nanotubes for in vivo radioemitter localization and imaging. Nat. Mater. 2010, 9, 485–490.
Prato, M.; Li, Q. C.; Wudl, F.; Lucchini, V. Addition of azides to fullerene C60: Synthesis of azafulleroids. J. Am. Chem. Soc. 1993, 115, 1148–1150.
Holzinger, M.; Abraham, J.; Whelan, P.; Graupner, R.; Ley, L.; Hennrich, F.; Kappes, M.; Hirsch, A. Functionalization of single-walled carbon nanotubes with (R-)oxycarbonyl nitrenes. J. Am. Chem. Soc. 2003, 125, 8566–8580.
Leinonen, H.; Pettersson, M.; Lajunen, M. Water-soluble carbon nanotubes through sugar azide functionalization. Carbon 2011, 49, 1299–1304.
Liu, L. H.; Yan, M. Simple method for the covalent immobilization of graphene. Nano Lett. 2009, 9, 3375–3378.
Liu, L. H.; Zorn, G.; Castner, D. G.; Solanki, R.; Lerner, M. M.; Yan, M. A simple and scalable route to wafer-size patterned graphene. J. Mater. Chem. 2010, 20, 5041–5046.
Liu, L. H.; Yan, M. Functionalization of pristine graphene with perfluorophenyl azides. J. Mater. Chem. 2011, 21, 3273–3276.
Liu, L. H.; Nandamuri, G.; Solanki, R.; Yan, M. Electrical properties of covalently immobilized single-layer graphene devices. J. Nanosci. Nanotechnol. 2011, 11, 1288–1292.
Zorn, G.; Liu, L. H.; árnadóttir, L.; Wang, H.; Gamble, L. J.; Castner, D. G.; Yan, M. X-ray photoelectron spectroscopy investigation of the nitrogen species in photoactive perfluorophenylazide-modified surfaces. J. Phys. Chem. C 2014, 118, 376–383.
Michalak, J.; Zhai, H. B.; Platz, M. S. The photochemistry of various para-substituted tetrafluorophenyl azides in acidic media and the formation of nitrenium ions. J. Phys. Chem. 1996, 100, 14028–14036.
Liu, L. H.; Yan, M. Perfluorophenyl azides: New applications in surface functionalization and nanomaterial synthesis. Acc. Chem. Res. 2010, 43, 1434–1443.
Yan, M.; Cai, S. X.; Keana, J. F. W. Photochemical and thermal reactions of C60 with N-succinimidyl 4-azido-2, 3, 5, 6-tetrafluorobenzoate: A new method for functionalization of C60. J. Org. Chem. 1994, 59, 5951–5954.
Pastine, S. J.; Okawa, D.; Kessler, B.; Rolandi, M.; Llorente, M.; Zettl, A.; Fréchet, J. M. J. A facile and patternable method for the surface modification of carbon nanotube forests using perfluoroarylazides. J. Am. Chem. Soc. 2008, 130, 4238–4239.
Kong, N.; Shimpi, M.; Ramström, O.; Yan, M. Functionalization of carbohydrate-presenting single-walled carbon nanotubes using microwave-assisted phenylnitrene addition and their biorecognition applications. Abstr. Pap. Am. Chem. Soc. 2013, 245.
Kelly, K. L.; Coronado, E.; Zhao, L. L.; Schatz, G. C. The optical properties of metal nanoparticles: The influence of size, shape, and dielectric environment. J. Phys. Chem. B 2002, 107, 668–677.
Aslan, K.; Zhang, J.; Lakowicz, J. R.; Geddes, C. D. Saccharide sensing using gold and silver nanoparticles-a review. J. Fluoresc. 2004, 14, 391–400.
Wang, Z. X.; Ma, L. N. Gold nanoparticle probes. Coord. Chem. Rev. 2009, 253, 1607–1618.
Saha, K.; Agasti, S. S.; Kim, C.; Li, X.; Rotello, V. M. Gold nanoparticles in chemical and biological sensing. Chem. Rev. 2012, 112, 2739–2779.
Jayawardena, H. S. N.; Wang, X.; Yan, M. Classification of lectins by pattern recognition using glyconanoparticles. Anal. Chem. 2013, 85, 10277–10281.
Craig, D.; Simpson, J.; Faulds, K.; Graham, D. Formation of SERS active nanoparticle assemblies via specific carbohydrate-protein interactions. Chem. Commun. 2013, 49, 30–32.
Kong, X. M.; Yu, Q.; Lv, Z. P.; Du, X. Z. Tandem assays of protein and glucose with functionalized core/shell particles based on magnetic separation and surface-enhanced Raman scattering. Small 2013, 9, 3259–3264.
de Souza, A. C.; Halkes, K. M.; Meeldijk, J. D.; Verkleij, A. J.; Vliegenthart, J. F. G.; Kamerling, J. P. Synthesis of gold glyconanoparticles: Possible probes for the exploration of carbohydrate-mediated self-recognition of marine sponge cells. Eur. J. Org. Chem. 2004, 2004, 4323–4339.
de la Fuente, J. M.; Barrientos, A. G.; Rojas, T. C.; Rojo, J.; Cañada, J.; Fernández, A.; Penadés, S. Gold glyconanoparticles as water-soluble polyvalent models to study carbohydrate Interactions. Angew. Chem. Int. Ed. 2001, 40, 2257–2261.
Kulkarni, A. A.; Fuller, C.; Korman, H.; Weiss, A. A.; Iyer, S. S. Glycan encapsulated gold nanoparticles selectively inhibit shiga toxins 1 and 2. Bioconjugate Chem. 2010, 21, 1486–1493.
Reynolds, A. J.; Haines, A. H.; Russell, D. A. Gold glyconanoparticles for mimics and measurement of metal ion-mediated carbohydrate-carbohydrate interactions. Langmuir 2006, 22, 1156–1163.
Nolting, B.; Yu, J. J.; Liu, G. Y.; Cho, S. J.; Kauzlarich, S.; Gervay-Hague, J. Synthesis of gold glyconanoparticles and biological evaluation of recombinant gp120 interactions. Langmuir 2003, 19, 6465–6473.
Rojo, J.; Díaz, V.; de la Fuente, J. M.; Segura, I.; Barrientos, A. G.; Riese, H. H.; Bernad, A.; Penadés, S. Gold glyconanoparticles as new tools in antiadhesive therapy. ChemBioChem 2004, 5, 291–297.
de Paz, J. L.; Ojeda, R.; Barrientos, á. G.; Penadés, S.; Martín-Lomas, M. Synthesis of a Ley neoglycoconjugate and Ley-functionalized gold glyconanoparticles. Tetrahedron: Asymmetry 2005, 16, 149–158.
de la Fuente, J. M.; Eaton, P.; Barrientos, A. G.; Menéndez, M.; Penadés, S. Thermodynamic evidence for Ca2+-mediated self-aggregation of lewis X gold glyconanoparticles. A model for cell adhesion via carbohydrate-carbohydrate interaction. J. Am. Chem. Soc. 2005, 127, 6192–6197.
Schofield, C. L.; Mukhopadhyay, B.; Hardy, S. M.; McDonnell, M. B.; Field, R. A.; Russell, D. A. Colorimetric detection of Ricinus communis Agglutinin 120 using optimally presented carbohydrate-stabilised gold nanoparticles. Analyst 2008, 133, 626–634.
Otsuka, H.; Akiyama, Y.; Nagasaki, Y.; Kataoka, K. Quantitative and reversible lectin-induced association of gold nanoparticles modified with α-lactosyl-ω-mercapto-poly(ethylene glycol). J. Am. Chem. Soc. 2001, 123, 8226–8230.
Wang, X.; Ramström, O.; Yan, M. A photochemically initiated chemistry for coupling underivatized carbohydrates to gold nanoparticles. J. Mater. Chem. 2009, 19, 8944–8949.
Alivisatos, P. The use of nanocrystals in biological detection. Nat. Biotechnol. 2004, 22, 47–52.
Michalet, X.; Pinaud, F. F.; Bentolila, L. A.; Tsay, J. M.; Doose, S.; Li, J. J.; Sundaresan, G.; Wu, A. M.; Gambhir, S. S.; Weiss, S. Quantum dots for live cells, in vivo imaging, and diagnostics. Science 2005, 307, 538–544.
de la Fuente, J. M.; Penadés, S. Glyco-quantum dots: A new luminescent system with multivalent carbohydrate display. Tetrahedron: Asymmetry 2005, 16, 387–391.
Mukhopadhyay, B.; Martins, M. B.; Karamanska, R.; Russell, D. A.; Field, R. A. Bacterial detection using carbohydrate-functionalised CdS quantum dots: A model study exploiting E. coli recognition of mannosides. Tetrahedron Lett. 2009, 50, 886–889.
Babu, P.; Sinha, S.; Surolia, A. Sugar-quantum dot conjugates for a selective and sensitive detection of lectins. Bioconjugate Chem. 2007, 18, 146–151.
Kikkeri, R.; Laurino, P.; Odedra, A.; Seeberger, P. H. Synthesis of carbohydrate-functionalized quantum dots in microreactors. Angew. Chem. Int. Ed. 2010, 49, 2054–2057.
Laurino, P.; Kikkeri, R.; Seeberger, P. H. Continuous-flow reactor-based synthesis of carbohydrate and dihydrolipoic acid-capped quantum dots. Nat. Protoc. 2011, 6, 1209–1220.
Dai, Z.; Kawde, A. N.; Xiang, Y.; La Belle, J. T.; Gerlach, J.; Bhavanandan, V. P.; Joshi, L.; Wang, J. Nanoparticle-based sensing of glycan-lectin interactions. J. Am. Chem. Soc. 2006, 128, 10018–10019.
Kikkeri, R.; Lepenies, B.; Adibekian, A.; Laurino, P.; Seeberger, P. H. In vitro imaging and in vivo liver targeting with carbohydrate capped quantum dots. J. Am. Chem. Soc. 2009, 131, 2110–2112.
Basiruddin, S. K.; Ranjan Maity, A.; Jana, N. R. Glucose/galactose/dextran-functionalized quantum dots, iron oxide and doped semiconductor nanoparticles with <100 nm hydrodynamic diameter. RSC Adv. 2012, 2, 11915–11921.
Pankhurst, Q. A.; Connolly, J.; Jones, S. K.; Dobson, J. Applications of magnetic nanoparticles in biomedicine. J. Phys. D: Appl. Phys. 2003, 36, R167.
Laurent, S.; Forge, D.; Port, M.; Roch, A.; Robic, C.; Vander Elst, L.; Muller, R. N. Magnetic iron oxide nanoparticles: Synthesis, stabilization, vectorization, physicochemical characterizations, and biological applications. Chem. Rev. 2008, 108, 2064–2110.
Sun, C.; Lee, J. S. H.; Zhang, M. Q. Magnetic nanoparticles in MR imaging and drug delivery. Adv. Drug Delivery Rev. 2008, 60, 1252–1265.
Gao, J. H.; Gu, H. W.; Xu, B. Multifunctional magnetic nanoparticles: Design, synthesis, and biomedical applications. Acc. Chem. Res. 2009, 42, 1097–1107.
Veiseh, O.; Gunn, J. W.; Zhang, M. Q. Design and fabrication of magnetic nanoparticles for targeted drug delivery and imaging. Adv. Drug Delivery Rev. 2010, 62, 284–304.
Cameron, D. G.; Bensley, E. H.; Wood, P.; Grayston, V. Treatment of iron deficiency anaemia with saccharated iron oxide given by the intravenous route. Can. Med. Assoc. J. 1951, 64, 27–30.
Lu, M.; Suh, K. R.; Lee, H. Z.; Cohen, M.; Rieves, D.; Pazdur, R. FDA review of ferumoxytol (feraheme) for the treatment of iron deficiency anemia in adults with chronic kidney disease. Am. J. Hematol. 2010, 85, 315–319.
Horák, D.; Babič, M.; Jendelová, P.; Herynek, V.; Trchová, M.; Pientka, Z.; Pollert, E.; Hájek, M.; Syková, E. D-Mannose-modified iron oxide nanoparticles for stem cell labeling. Bioconjugate Chem. 2007, 18, 635–644.
Kekkonen, V.; Lafreniere, N.; Ebara, M.; Saito, A.; Sawa, Y.; Narain, R. Synthesis and characterization of biocompatible magnetic glyconanoparticles. J. Magn. Magn. Mater. 2009, 321, 1393–1396.
Baccile, N.; Noiville, R.; Stievano, L.; Bogaert, I. V. Sophorolipids-functionalized iron oxide nanoparticles. Phys. Chem. Chem. Phys. 2013, 15, 1606–1620.
Lartigue, L.; Innocenti, C.; Kalaivani, T.; Awwad, A.; Sanchez Duque, M. D. M.; Guari, Y.; Larionova, J.; Guérin, C.; Montero, J. L. G.; Barragan-Montero, V. et al. Water-dispersible sugar-coated iron oxide nanoparticles. An evaluation of their relaxometric and magnetic hyperthermia properties. J. Am. Chem. Soc. 2011, 133, 10459–10472.
Kouyoumdjian, H.; Zhu, D. C.; El-Dakdouki, M. H.; Lorenz, K.; Chen, J. J.; Li, W.; Huang, X. F. Glyconanoparticle aided detection of β-amyloid by magnetic resonance imaging and attenuation of β-amyloid induced cytotoxicity. ACS Chem. Neurosci. 2013, 4, 575–584.
Liu, L. H.; Dietsch, H.; Schurtenberger, P.; Yan, M. Photoinitiated coupling of unmodified monosaccharides to iron oxide nanoparticles for sensing proteins and bacteria. Bioconjugate Chem. 2009, 20, 1349–1355.
Jayawardena, H. S. N.; Jayawardana, K. W.; Chen, X.; Yan, M. Maltoheptaose promotes nanoparticle internalization by Escherichia coli. Chem. Commun. 2013, 49, 3034–3036.
Santra, S.; Wang, K. M.; Tapec, R.; Tan, W. H. Development of novel dye-doped silica nanoparticles for biomarker application. J. Biomed. Opt. 2001, 6, 160–166.
Tan, W. H.; Wang, K. M.; He, X. X.; Zhao, X. J.; Drake, T.; Wang, L.; Bagwe, R. P. Bionanotechnology based on silica nanoparticles. Med. Res. Rev. 2004, 24, 621–638.
Slowing, I. I.; Trewyn, B. G.; Giri, S.; Lin, V. S. Y. Mesoporous silica nanoparticles for drug delivery and biosensing applications. Adv. Funct. Mater. 2007, 17, 1225–1236.
Trewyn, B. G.; Slowing, I. I.; Giri, S.; Chen, H. T.; Lin, V. S. Y. Synthesis and functionalization of a mesoporous silica nanoparticle based on the sol-gel process and applications in controlled release. Acc. Chem. Res. 2007, 40, 846–853.
He, Q. J.; Shi, J. L. MSN anti-cancer nanomedicines: Chemotherapy enhancement, overcoming of drug resistance, and metastasis inhibition. Adv. Mater. 2013, 26, 391–411
Zhao, J. S.; Liu, Y. F.; Park, H. J.; Boggs, J. M.; Basu, A. Carbohydrate-coated fluorescent silica nanoparticles as probes for the galactose/3-sulfogalactose carbohydrate-carbohydrate interaction using model systems and cellular binding studies. Bioconjugate Chem. 2012, 23, 1166–1173.
Peng, J. F.; Wang, K. M.; Tan, W. H.; He, X. X.; He, C. M.; Wu, P.; Liu, F. Identification of live liver cancer cells in a mixed cell system using galactose-conjugated fluorescent nanoparticles. Talanta 2007, 71, 833–840.
Gary-Bobo, M.; Mir, Y.; Rouxel, C.; Brevet, D.; Basile, I.; Maynadier, M.; Vaillant, O.; Mongin, O.; Blanchard-Desce, M.; Morère, A. et al. Mannose-functionalized mesoporous silica nanoparticles for efficient two-photon photodynamic therapy of solid tumors. Angew. Chem. Int. Ed. 2011, 50, 11425–11429.
Wang, X.; Ramström, O.; Yan, M. Dye-doped silica nanoparticles as efficient labels for glycans. Chem. Commun. 2011, 47, 4261–4263.
Tong, Q.; Wang, X.; Wang, H.; Kubo, T.; Yan, M. Fabrication of glyconanoparticle microarrays. Anal. Chem. 2012, 84, 3049–3052.
Wang, H.; Tong, Q.; Yan, M. Antifouling surfaces for proteins labeled with dye-doped silica nanoparticles. Anal. Chem. 2012, 85, 23–27.
Barrientos, A. G.; de la Fuente, J. M.; Jiménez, M.; Solís, D.; Cañada, F. J.; Martín-Lomas, M.; Penadés, S. Modulating glycosidase degradation and lectin recognition of gold glyconanoparticles. Carbohydr. Res. 2009, 344, 1474–1478.
Houseman, B. T.; Mrksich, M. The role of ligand density in the enzymatic glycosylation of carbohydrates presented on self-assembled monolayers of alkanethiolates on gold. Angew. Chem. Int. Ed. 1999, 38, 782–785.
Eggeling, C.; Widengren, J.; Rigler, R.; Seidel, C. A. M. Photobleaching of fluorescent dyes under conditions used for single-molecule detection: Evidence of two-step photolysis. Anal. Chem. 1998, 70, 2651–2659.
Santra, S.; Dutta, D.; Moudgil, B. M. Functional dye-doped silica nanoparticles for bioimaging, diagnostics and therapeutics. Food Bioprod. Process. 2005, 83, 136–140.
Yan, J. L.; Estévez, M. C.; Smith, J. E.; Wang, K. M.; He, X. X.; Wang, L.; Tan, W. H. Dye-doped nanoparticles for bioanalysis. Nano Today 2007, 2, 44–50.
Miletto, I.; Gilardino, A.; Zamburlin, P.; Dalmazzo, S.; Lovisolo, D.; Caputo, G.; Viscardi, G.; Martra, G. Highly bright and photostable cyanine dye-doped silica nanoparticles for optical imaging: Photophysical characterization and cell tests. Dyes Pigm. 2010, 84, 121–127.
Robinson, A.; Fang, J. M.; Chou, P. T.; Liao, K. W.; Chu, R. M.; Lee, S. J. Probing lectin and sperm with carbohydrate-modified quantum dots. ChemBioChem 2005, 6, 1899–1905.
Coulon, J.; Thouvenin, I.; Aldeek, F.; Balan, L.; Schneider, R. Glycosylated quantum dots for the selective labelling of Kluyveromyces bulgaricus and Saccharomyces cerevisiae yeast strains. J. Fluoresc. 2010, 20, 591–597.
Derfus, A. M.; Chan, W. C. W.; Bhatia, S. N. Probing the cytotoxicity of semiconductor quantum dots. Nano Lett. 2003, 4, 11–18.
Erogbogbo, F.; Yong, K. T.; Roy, I.; Xu, G. X.; Prasad, P. N.; Swihart, M. T. Biocompatible luminescent silicon quantum dots for imaging of cancer cells. ACS Nano 2008, 2, 873–878.
Cho, S. J.; Maysinger, D.; Jain, M.; Röder, B.; Hackbarth, S.; Winnik, F. M. Long-term exposure to CdTe quantum dots causes functional impairments in live cells. Langmuir 2007, 23, 1974–1980.
Ahire, J. H.; Chambrier, I.; Mueller, A.; Bao, Y. P.; Chao, Y. M. Synthesis of D-mannose capped silicon nanoparticles and their Interactions with MCF-7 human breast cancerous cells. ACS Appl. Mater. Interfaces 2013, 5, 7384–7391.
Wu, C. F.; Chiu, D. T. Highly fluorescent semiconducting polymer dots for biology and medicine. Angew. Chem. Int. Ed. 2014, 52, 3086–3109.
Wu, C. F.; Schneider, T.; Zeigler, M.; Yu, J. B.; Schiro, P. G.; Burnham, D. R.; McNeill, J. D.; Chiu, D. T. Bioconjugation of ultrabright semiconducting polymer dots for specific cellular targeting. J. Am. Chem. Soc. 2010, 132, 15410–15417.
Kirchner, C.; Liedl, T.; Kudera, S.; Pellegrino, T.; Muñoz Javier, A.; Gaub, H. E.; Stölzle, S.; Fertig, N.; Parak, W. J. Cytotoxicity of colloidal CdSe and CdSe/ZnS nanoparticles. Nano Lett. 2004, 5, 331–338.
Lovrić, J.; Bazzi, H.; Cuie, Y.; Fortin, G. A.; Winnik, F.; Maysinger, D. Differences in subcellular distribution and toxicity of green and red emitting CdTe quantum dots. J. Mol. Med. 2005, 83, 377–385.
Lavigne, J. J.; Broughton, D. L.; Wilson, J. N.; Erdogan, B.; Bunz, U. H. F. "Surfactochromic" conjugated polymers: Surfactant effects on sugar-substituted PPEs. Macromolecules 2003, 36, 7409–7412.
Disney, M. D.; Zheng, J.; Swager, T. M.; Seeberger, P. H. Detection of bacteria with carbohydrate-functionalized fluorescent polymers. J. Am. Chem. Soc. 2004, 126, 13343–13346.
Pfaff, A.; Schallon, A.; Ruhland, T. M.; Majewski, A. P.; Schmalz, H.; Freitag, R.; Müller, A. H. E. Magnetic and fluorescent glycopolymer hybrid nanoparticles for intranuclear optical imaging. Biomacromolecules 2011, 12, 3805–3811.
Yung, K. T. Empirical models of transverse relaxation for spherical magnetic perturbers. Magn. Reson. Imaging 2003, 21, 451–463.
El-Boubbou, K.; Zhu, D. C.; Vasileiou, C.; Borhan, B.; Prosperi, D.; Li, W.; Huang, X. L. Magnetic glyconanoparticles: A tool to detect, differentiate, and unlock the glyco-codes of cancer via magnetic resonance imaging. J. Am. Chem. Soc. 2010, 132, 4490–4499.
van Kasteren, S. I.; Campbell, S. J.; Serres, S.; Anthony, D. C.; Sibson, N. R.; Davis, B. G. Glyconanoparticles allow pre-symptomatic in vivo imaging of brain disease. Proc. Natl. Acad. Sci. USA 2009, 106, 18–23.
Debouttière, P. J.; Roux, S.; Vocanson, F.; Billotey, C.; Beuf, O.; Favre-Réguillon, A.; Lin, Y.; Pellet-Rostaing, S.; Lamartine, R.; Perriat, P. et al. Design of gold nanoparticles for magnetic resonance imaging. Adv. Funct. Mater. 2006, 16, 2330–2339.
Park, J. A.; Reddy, P. A. N.; Kim, H. K.; Kim, I. S.; Kim, G. C.; Chang, Y. M.; Kim, T. J. Gold nanoparticles functionalised by Gd-complex of DTPA-bis(amide) conjugate of glutathione as an MRI contrast agent. Bioorg. Med. Chem. Lett. 2008, 18, 6135–6137.
Li, Y.; Beija, M.; Laurent, S.; Elst, L. V.; Muller, R. N.; Duong, H. T. T.; Lowe, A. B.; Davis, T. P.; Boyer, C. Macromolecular ligands for gadolinium MRI contrast agents. Macromolecules 2012, 45, 4196–4204.
Sun, M.; Zhang, H. Y.; Liu, B. W.; Liu, Y. Construction of a supramolecular polymer by bridged bis(permethyl-β-cyclodextrin)s with porphyrins and its highly efficient magnetic resonance imaging. Macromolecules 2013, 46, 4268–4275.
Marradi, M.; Alcántara, D.; de la Fuente, J. M.; García-Martín, M. L.; Cerdán, S.; Penadés, S. Paramagnetic Gd-based gold glyconanoparticles as probes for MRI: Tuning relaxivities with sugars. Chem. Commun. 2009, 3922–3924.
Pelizzari, C. A.; Chen, G. T. Y.; Spelbring, D. R.; Weichselbaum, R. R.; Chen, C. T. Accurate three-dimensional registration of CT, PET, and/or MR images of the brain. J. Comput. Assist. Tomo. 1989, 13, 20–26.
Beyer, T.; Townsend, D. W.; Brun, T.; Kinahan, P. E.; Charron, M.; Roddy, R.; Jerin, J.; Young, J.; Byars, L.; Nutt, R. A combined PET/CT scanner for clinical oncology. J. Nucl. Med. 2000, 41, 1369–1379.
Kapoor, V.; McCook, B. M.; Torok, F. S. An Introduction to PET-CT imaging. Radiographics 2004, 24, 523–543.
Yang, Z.; Zheng, S. Y.; Harrison, W. J.; Harder, J.; Wen, X. X.; Gelovani, J. G.; Qiao, A.; Li, C. Long-circulating near-infrared fluorescence core-cross-linked polymeric micelles: Synthesis, characterization, and dual nuclear/optical imaging. Biomacromolecules 2007, 8, 3422–3428.
Zhu, H.; Zhao, J.; Lin, X. F.; Hong, Y.; Li, C.; Yang, Z. Design, synthesis and evaluation of dual-modality glyco-nanoparticles for tumor imaging. Molecules 2013, 18, 6425–6438.
Gu, L. R.; Elkin, T.; Jiang, X. P.; Li, H. P.; Lin, Y.; Qu, L. W.; Tzeng, T. R. J.; Joseph, R.; Sun, Y. P. Single-walled carbon nanotubes displaying multivalent ligands for capturing pathogens. Chem. Commun. 2005, 874–876.
Gu, L. R.; Luo, P. G.; Wang, H. F.; Meziani, M. J.; Lin, Y.; Veca, L. M.; Cao, L.; Lu, F. S.; Wang, X.; Quinn, R. A. et al. Single-walled carbon nanotube as a unique scaffold for the multivalent display of sugars. Biomacromolecules 2008, 9, 2408–2418.
Yang, Y.; Zhao, Y. T.; Yan, T. T.; Yu, M.; Sha, Y. L.; Zhao, Z. H.; Li, Z. J. Design and fabrication of multivalent Gal-containing quantum dots and study of its interactions with asialoglycoprotein receptor (ASGP-R). Tetrahedron Lett. 2010, 51, 4182–4185.
Cai, X. J.; Li, X. H.; Liu, Y. W.; Wu, G. N.; Zhao, Y. C.; Chen, F.; Gu, Z. W. Galactose decorated acid-labile nanoparticles encapsulating quantum dots for enhanced cellular uptake and subcellular localization. Pharm. Res. 2012, 29, 2167–2179.
Osaki, F.; Kanamori, T.; Sando, S.; Sera, T.; Aoyama, Y. A quantum dot conjugated sugar ball and its cellular uptake. On the size effects of endocytosis in the subviral region. J. Am. Chem. Soc. 2004, 126, 6520–6521.
Ohyanagi, T.; Nagahori, N.; Shimawaki, K.; Hinou, H.; Yamashita, T.; Sasaki, A.; Jin, T.; Iwanaga, T.; Kinjo, M.; Nishimura, S. I. Importance of sialic acid residues illuminated by live animal imaging using phosphorylcholine self-assembled monolayer-coated quantum dots. J. Am. Chem. Soc. 2011, 133, 12507–12517.
Martínez-ávila, O.; Hijazi, K.; Marradi, M.; Clavel, C.; Campion, C.; Kelly, C.; Penadés, S. Gold manno-glyconanoparticles: Multivalent systems to block HIV-1 gp120 binding to the lectin DC-SIGN. Chem. -Eur. J. 2009, 15, 9874–9888.
Martínez-ávila, O.; Bedoya, L. M.; Marradi, M.; Clavel, C.; Alcamí, J.; Penadés, S. Multivalent manno-glyconanoparticles inhibit DC-SIGN-mediated HIV-1 trans-infection of human T cells. ChemBioChem 2009, 10, 1806–1809.
Luczkowiak, J.; Muñoz, A.; Sánchez-Navarro, M.; Ribeiro-Viana, R.; Ginieis, A.; Illescas, B. M.; Martín, N.; Delgado, R.; Rojo, J. Glycofullerenes inhibit viral infection. Biomacromolecules 2013, 14, 431–437.
Dougherty, T. J.; Dougherty, T. J.; Gomer, C. J.; Jori, G.; Kessel, D.; Korbelik, M.; Moan, J.; Peng, Q. Photodynamic therapy. J. Natl. Cancer Inst. 1998, 90, 889–905.
Brevet, D.; Gary-Bobo, M.; Raehm, L.; Richeter, S.; Hocine, O.; Amro, K.; Loock, B.; Couleaud, P.; Frochot, C.; Morère, A. et al. Mannose-targeted mesoporous silica nanoparticles for photodynamic therapy. Chem. Commun. 2009, 1475–1477.
Perrier, M.; Gary-Bobo, M.; Lartigue, L.; Brevet, D.; Morère, A.; Garcia, M.; Maillard, P.; Raehm, L.; Guari, Y.; Larionova, J. et al. Mannose-functionalized porous silica-coated magnetic nanoparticles for two-photon imaging or PDT of cancer cells. J. Nanopart. Res. 2013, 15, 1–17.
Laurent, S.; Dutz, S.; Häfeli, U. O.; Mahmoudi, M. Magnetic fluid hyperthermia: Focus on superparamagnetic iron oxide nanoparticles. Adv. Colloid Interface Sci. 2011, 166, 8–23.
Deatsch, A. E.; Evans, B. A. Heating efficiency in magnetic nanoparticle hyperthermia. J. Magn. Magn. Mater. 2014, 354, 163–172.
Salunkhe, A. B.; Khot, V. M.; Pawar, S. H. Magnetic hyperthermia with magnetic nanoparticles: A status review. Curr. Top. Med. Chem. 2014, 14, 572–594.
Mornet, S.; Vasseur, S.; Grasset, F.; Duguet, E. Magnetic nanoparticle design for medical diagnosis and therapy. J. Mater. Chem. 2004, 14, 2161–2175.
Hergt, R.; Dutz, S.; Müller, R.; Zeisberger, M. Magnetic particle hyperthermia: Nanoparticle magnetism and materials development for cancer therapy. J. Phys. : Condens. Matter 2006, 18, S2919.
Thiesen, B.; Jordan, A. Clinical applications of magnetic nanoparticles for hyperthermia. Int. J. Hyperthermia 2008, 24, 467–474.
Shubayev, V. I.; Pisanic, T. R. II; Jin, S. Magnetic nanoparticles for theragnostics. Adv. Drug Delivery Rev. 2009, 61, 467–477.
Kumar, C. S.; Mohammad, F. Magnetic nanomaterials for hyperthermia-based therapy and controlled drug delivery. Adv. Drug Delivery Rev. 2011, 63, 789–808.