AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Dual functional transparent film for proximity and pressure sensing

Bo Zhang1,§Zemin Xiang1,§Siwei Zhu1Qiyi Hu1Yuanzhi Cao1Junwen Zhong1Qize Zhong1Bo Wang1,2Yunsheng Fang1Bin Hu1( )Jun Zhou1Zhonglin Wang3
Wuhan National Laboratory for Optoelectronics (WNLO), School of Optical and Electronic InformationHuazhong University of Science and Technology (HUST)Wuhan430074China
Department of Electrical Engineering and AutomationLuoyang Institute of Science and TechnologyLuoyang471023China
School of Materials Science and EngineeringGeorgia Institute of TechnologyAtlanta, Georgia30332-0245USA

§These authors contributed equally to this work.

Show Author Information

Graphical Abstract

Abstract

Over the past few years, the rapid development of tactile sensing technology has contributed significantly to the realization of intuitional touch control and intelligent human-machine interaction. Apart from physical touch or pressure sensing, proximity sensing as a complementary function can extend the detection mode of common single functional tactile sensors. In this work, we present a transparent, matrix-structure dual functional capacitive sensor which integrates the capability of proximity and pressure sensing in one device, and the excellent spatial resolution offered by the isolated response of capacitive pixels enables us to realize precise location identification of approaching objects and loaded pressure with fast response, high stability and high reversibility.

Electronic Supplementary Material

Download File(s)
12274_2014_510_MOESM1_ESM.pdf (2 MB)

References

1

Maheshwari, V.; Saraf, R. F. High-resolution thin-film device to sense texture by touch. Science 2006, 312, 1501–1504.

2

Hu, B.; Chen, W.; Zhou, J. High performance flexible sensor based on inorganic nanomaterials. Sensor. Actuat. B 2013, 176, 522–533.

3

Hu, B.; Ding, Y.; Chen, W.; Kulkarni, D.; Shen, Y.; Tsukruk, V. V.; Wang, Z. L. External-strain induced insulating phase transition in VO2 nanobeam and its application as flexible strain sensor. Adv. Mater. 2010, 22, 5134–5139.

4

Mannsfeld, S. C.; Tee, B. C. K.; Stoltenberg, R. M.; Chen, C. V. H. H.; Barman, S.; Muir, B. V. O.; Sokolov, A. N.; Reese, C.; Bao, Z. N. Highly sensitive flexible pressure sensors with microstructured rubber dielectric layers. Nat. Mater. 2010, 9, 859–864.

5

Wu, W. Z.; Wen, X. N.; Wang, Z. L. Taxel-addressable matrix of vertical-nanowire piezotronic transistors for active and adaptive tactile imaging. Science 2013, 340, 952–957.

6

Tee, B. C. K.; Wang, C.; Allen, R.; Bao, Z. N. An electrically and mechanically self-healing composite with pressure- and flexion-sensitive properties for electronic skin applications. Nat. Nanotechnol. 2012, 7, 825–832.

7

Wang, C.; Hwang, D.; Yu, Z. B.; Takei, K.; Park, J.; Chen, T.; Ma, B. W.; Javey, A. User-interactive electronic skin for instantaneous pressure visualization. Nat. Mater. 2013, 12, 899–904.

8

Ramuz, M.; Tee, B. C. K.; Tok, J. B. H.; Bao, Z. N. Transparent, optical, pressure-sensitive artificial skin for large-area stretchable electronics. Adv. Mater. 2012, 24, 3223–3227.

9

Lee, H. K.; Chang, S. I.; Yoon, E. Dual-mode capacitive proximity sensor for robot application: Implementation of tactile and proximity sensing capability on a single polymer platform using shared electrodes. IEEE Sens. J. 2009, 9, 1748–1755.

10

Sadler, D. J.; Ahn, C. H. On-chip eddy current sensor for proximity sensing and crack detection. Sensor. Actuat. A 2001, 91, 340–345.

11

Gueissaz, F.; Piguet, D. The microreed, an ultra-small passive MEMS magnetic proximity sensor designed for portable applications. In The 14th IEEE International Conference on Micro Electro Mechanical Systems, Interlaken, Switzerland, 2001, pp 269–273.

12

Canali, C.; De Cicco, G.; Morten, B.; Prudenziati, M.; Taroni, A. A temperature compensated ultrasonic sensor operating in air for distance and proximity measurements. IEEE Trans. Ind. Electron. 1982, IE-29, 336–341.

13

Balek, D.; Kelley, R. Using gripper mounted infrared proximity sensors for robot feedback control. In 1985 IEEE International Conference on Robotics and Automation, St. Louis, USA, 1985, pp 282–287.

14

Chen, Z. H.; Luo, R. C. Design and implementation of capacitive proximity sensor using microelectromechanical systems technology. IEEE Trans. Ind. Electron. 1998, 45, 886–894.

15

Takamatsu, S.; Yamashita, T.; Imai, T.; Itoh, T. Fabric touch sensors using projected self-capacitive touch technique. Sens. Mater. 2013, 25, 627–634.

16

Kim, H. K.; Lee, S.; Yun, K. S. Capacitive tactile sensor array for touch screen application. Sensor. Actuat. A 2011, 165, 2–7.

17

Guo, S. W.; Guo, J.; Ko, W. H. A monolithically integrated surface micromachined touch mode capacitive pressure sensor. Sensor. Actuat. A 2000, 80, 224–232.

18

Ko, W. H.; Wang, Q. Touch mode capacitive pressure sensors. Sensor. Actuat. A 1999, 75, 242–251.

19

Zhu, S. W.; Gao, Y.; Hu, B.; Li, J.; Su, J.; Fan, Z. Y.; Zhou, J. Transferable self-welding silver nanowire network as high performance transparent flexible electrode. Nanotechnology 2013, 24, 335202.

20

Lee, J.; Lee, P.; Lee, H.; Lee, D.; Lee, S. S.; Ko, S. H. Very long Ag nanowire synthesis and its application in a highly transparent, conductive and flexible metal electrode touch panel. Nanoscale 2012, 4, 6408–6414.

21

De, S.; Higgins, T. M.; Lyons, P. E.; Doherty, E. M.; Nirmalraj, P. N.; Blau, W. J.; Boland, J. J.; Coleman, J. N. Silver nanowire networks as flexible, transparent, conducting films: Extremely high DC to optical conductivity ratios. ACS Nano 2009, 3, 1767–1774.

22

Lipomi, D. J.; Vosgueritchian, M.; Tee, B. C. K.; Hellstrom, S. L.; Lee, J. A.; Fox, C. H.; Bao, Z. N. Skin-like pressure and strain sensors based on transparent elastic films of carbon nanotubes. Nat. Nanotechnol. 2011, 6, 788–792.

23

Vandeparre, H.; Watson, D.; Lacour, S. P. Extremely robust and conformable capacitive pressure sensors based on flexible polyurethane foams and stretchable metallization. Appl. Phys. Lett. 2013, 103, 204103.

24

Hu, W. L.; Niu, X. F.; Zhao, R.; Pei, Q. B. Elastomeric transparent capacitive sensors based on an interpenetrating composite of silver nanowires and polyurethane. Appl. Phys. Lett. 2013, 102, 083303.

25

Yao, S. S.; Zhu, Y. Wearable multifunctional sensors using printed stretchable conductors made of silver nanowires. Nanoscale 2014, 6, 2345–2352.

26

Hecht, D. S.; Hu, L. B.; Irvin, G. Emerging transparent electrodes based on thin films of carbon nanotubes, graphene, and metallic nanostructures. Adv. Mater. 2011, 23, 1482–1513.

27

Hu, L. B.; Kim, H. S.; Lee, J. Y.; Peumans, P.; Cui, Y. Scalable coating and properties of transparent, flexible, silver nanowire electrodes. ACS Nano 2010, 4, 2955–2963.

28

Kim, T. Y.; Kim, Y. W.; Lee, H. S.; Kim, H.; Yang, W. S.; Suh, K. S. Uniformly interconnected silver-nanowire networks for transparent film heaters. Adv. Funct. Mater. 2013, 23, 1250–1255.

29

Xu, F.; Zhu, Y. Highly conductive and stretchable silver nanowire conductors. Adv. Mater. 2012, 24, 5117–5122.

30

Bergin, S. M.; Chen, Y. H.; Rathmell, A. R.; Charbonneau, P.; Li, Z. Y.; Wiley, B. J. The effect of nanowire length and diameter on the properties of transparent, conducting nanowire films. Nanoscale 2012, 4, 1996–2004.

31

Barrett, G.; Omote, R. Projected-capacitive touch technology. Information Display 2010, 3, 16–21.

32

Wang, T.; Blankenship, T. Projected capacitive touch systems from the controller point of view. Information Display 2011, 3, 8–11.

33

Tartagni, M.; Guerrieri, R. A fingerprint sensor based on the feedback capacitive sensing scheme. IEEE J. Solid-State Circuits 1998, 33, 133–142.

34

Cotton, D. P. J.; Graz, I. M.; Lacour, S. P. A multifunctional capacitive sensor for stretchable electronic skins. IEEE Sens. J. 2009, 9, 2008–2009.

35

Li, N.; Zhu, H. Y.; Wang, W. Y.; Gong, Y. Parallel double-plate capacitive proximity sensor modelling based on effective theory. AIP Adv. 2014, 4, 027119.

36

Ko, S.; Shin, H.; Lee, J.; Jang, H.; So, B. C.; Yun, I.; Lee, K. Low noise capacitive sensor for multi-touch mobile handset's applications. In 2010 IEEE Asian Solid-State Circuits Conference (A-SSCC), Beijing, China, 2010, pp 1–4.

37

Yamada, T.; Hayamizu, Y.; Yamamoto, Y.; Yomogida, Y.; Izadi-Najafabadi, A.; Futaba, D. N.; Hata, K. A stretchable carbon nanotube strain sensor for human-motion detection. Nat. Nanotechnol. 2011, 6, 296–301.

38

Someya, T.; Sekitani, T.; Iba, S.; Kato, Y.; Kawaguchi, H.; Sakurai, T. A large-area, flexible pressure sensor matrix with organic field-effect transistors for artificial skin applications. Proc. Natl. Acad. Sci. USA 2004, 101, 9966–9970.

39

Kane, B. J.; Cutkosky, M. R.; Kovacs, G. T. A traction stress sensor array for use in high-resolution robotic tactile imaging. J. Microelectromech. Syst. 2000, 9, 425–434.

40

He, M. X.; Liu, R.; Li, Y.; Wang, H.; Lu, X.; Ding, G. F.; Wu, J. J.; Zhang, T.; Zhao, X. L. Tactile probing system based on micro-fabricated capacitive sensor. Sensor. Actuat. A 2013, 194, 128–134.

Nano Research
Pages 1488-1496
Cite this article:
Zhang B, Xiang Z, Zhu S, et al. Dual functional transparent film for proximity and pressure sensing. Nano Research, 2014, 7(10): 1488-1496. https://doi.org/10.1007/s12274-014-0510-3

657

Views

123

Crossref

N/A

Web of Science

123

Scopus

7

CSCD

Altmetrics

Received: 14 April 2014
Revised: 03 June 2014
Accepted: 07 June 2014
Published: 12 August 2014
© Tsinghua University Press and Springer‐Verlag Berlin Heidelberg 2014
Return