AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Magnetic transitions in graphene derivatives

Pengzhan Sun1Kunlin Wang1Jinquan Wei1Minlin Zhong1Dehai Wu2Hongwei Zhu1,3( )
School of Materials Science and Engineering, State Key Laboratory of New Ceramics and Fine Processing, Key Laboratory of Materials Processing Technology of MOETsinghua UniversityBeijing100084China
Department of Mechanical EngineeringTsinghua UniversityBeijing100084China
Center for Nano and Micro MechanicsTsinghua UniversityBeijing100084China
Show Author Information

Graphical Abstract

Abstract

The magnetic transitions in graphene oxide (GO) have been investigated experimentally. Micron-sized GO flakes exhibit dominant diamagnetism accompanied by weak ferromagnetism at room temperature. However, when the lateral dimensions of GO flakes are reduced from micron-size to nano-size, a clear transition from dominant diamagnetism to ferromagnetism is observed. After reducing the GO chemically or thermally, the dominant magnetic properties are not altered markedly except for the gradual enhancement of ferromagnetic components. In contrast, at 2 K, significant paramagnetism is present in both the micron-sized and nano-sized GO sheets. The effects of different functional groups on magnetic transitions in graphene derivatives have been further investigated using on hydroxyl-, carboxyl-, amino- and thiolfunctionalized graphene. The results reveal that significant diamagnetism with weak ferromagnetism is present at room temperature in all of these functionalized graphene derivatives and the ability of different functional groups to introduce magnetic moments follows the order -SH > -OH > -COOH, -NH2. Notably, at 5 K, diamagnetism, paramagnetism and ferromagnetism coexist in thiol-, hydroxyland carboxyl-functionalized graphene, while amino-graphene exhibits dominant paramagnetism, analogous to the low-temperature magnetism in GO. These results indicate that diamagnetism, paramagnetism and ferromagnetism can coexist in graphene derivatives and magnetic transitions among the three states can be achieved which depend on edge states, vacancies, chemical doping and the attached functional groups. The results obtained may help settle the current controversy about the magnetism of graphene-related materials.

Electronic Supplementary Material

Download File(s)
12274_2014_512_MOESM1_ESM.pdf (4.3 MB)

References

1

Tombros, N.; Jozsa, C.; Popinciuc, M.; Jonkman, H. T.; van Wees, B. J. Electronic spin transport and spin precession in single graphene layers at room temperature. Nature 2007, 448, 571–574.

2

Esquinazi, P.; Spemann, D.; Höhne, R.; Setzer, A.; Han, K. H.; Butz, T. Induced magnetic ordering by proton irradiation in graphite. Phys. Rev. Lett. 2003, 91, 227201.

3

Esquinazi, P.; Setzer, A.; Höhne, R.; Semmelhack, C.; Kopelevich, Y.; Spemann, D.; Butz, T. Ferromagnetism in oriented graphite samples. Phys. Rev. B 2002, 66, 024429.

4

Makarova, T. L.; Shelankov, A. L.; Serenkov, I. T.; Sakharov, V. I.; Boukhvalov, D. W. Anisotropic magnetism of graphite irradiated with medium-energy hydrogen and helium ions. Phys. Rev. B 2011, 83, 085417.

5

Wang, Y.; Huang, Y.; Song, Y.; Zhang, X.; Ma, Y.; Liang, J.; Chen, Y. Room-temperature ferromagnetism of graphene. Nano Lett. 2009, 9, 220–224.

6

Khurana, G.; Kumar, N.; Kotnala, R. K.; Nautiyal, T.; Katiyar, R. S. Temperature tuned defect induced magnetism in reduced graphene oxide. Nanoscale 2013, 5, 3346–3351.

7

Rao, S. S.; Jammalamadaka, S. N.; Stesmans, A.; Moshchalkov, V. V. Ferromagnetism in graphene nanoribbons: Split versus oxidative unzipped ribbons. Nano Lett. 2012, 12, 1210–1217.

8

Eng, A. Y. S.; Poh, H. L.; Sanek, F.; Marysko, M.; Matejkova, S.; Sofer, Z.; Pumera, M. Searching for magnetism in hydrogenated graphene: Using highly hydrogenated graphene prepared via Birch reduction of graphite oxides. ACS Nano 2013, 7, 5930–5939.

9

Zhou, J.; Wang, Q.; Sun, Q.; Chen, X. S.; Kawazoe, Y.; Jena, P. Ferromagnetism in semihydrogenated graphene sheet. Nano Lett. 2009, 9, 3867–3870.

10

Ramakrishna Matte, H. S. S.; Subrahmanyam, K. S.; Rao, C. N. R. Novel magnetic properties of graphene: Presence of both ferromagnetic and antiferromagnetic features and other aspects. J. Phys. Chem. C 2009, 113, 9982–9985.

11

Yazyev, O. V. Magnetism in disordered graphene and irradiated graphite. Phys. Rev. Lett. 2008, 101, 037203.

12

Yazyev, O. V.; Helm, L. Defect-induced magnetism in graphene. Phys. Rev. B 2007, 75, 125408.

13

Joly, V. L. J.; Kiguchi, M.; Hao, S. J.; Takai, K.; Enoki, T.; Sumii, R.; Amemiya, K.; Muramatsu, H.; Hayashi, T.; Kim, Y. A. et al. Observation of magnetic edge state in graphene nanoribbons. Phys. Rev. B 2010, 81, 245428.

14

Rao, C. N. R.; Ramakrishna Matte, H. S. S.; Subrahmanyam, K. S. Maitra, U. Unusual magnetic properties of graphene and related materials. Chem. Sci. 2012, 3, 45–52.

15

Dutta, S.; Lakshmi, S.; Pati, S. K. Electron-electron interactions on the edge states of graphene: A many-body configuration interaction study. Phys. Rev. B 2008, 77, 073412.

16

Sepioni, M.; Nair, R. R.; Rablen, S.; Narayanan, J.; Tuna, F.; Winpenny, R.; Geim, A. K.; Grigorieva, I. V. Limits on intrinsic magnetism in graphene. Phys. Rev. Lett. 2010, 105, 207205.

17

Nair, R. R.; Sepioni, M.; Tsai, I. L.; Lehtinen, O.; Keinonen, J.; Krasheninnikov, A. V.; Thomson, T.; Geim, A. K.; Grigorieva, I. V. Spin-half paramagnetism in graphene induced by point defects. Nat. Phys. 2012, 8, 199–202.

18

Hummers, W. S.; Offeman, R. E. Preparation of graphiticoxide. J. Am. Chem. Soc. 1958, 80, 1339.

19

Gu, W.; Zhang, W.; Li, X.; Zhu, H.; Wei, J.; Li, Z.; Shu, Q.; Wang, C.; Wang, K.; Shen, W.; Kang, F.; Wu, D. Graphene sheets from worm-like exfoliated graphite. J. Mater. Chem. 2009, 19, 3367–3369.

20

Feldner, H.; Meng, Z. Y.; Lang, T. C.; Assaad, F. F.; Wessel, S.; Honecker, A. Dynamical signatures of edge-state magnetism on graphene nanoribbons. Phys. Rev. Lett. 2011, 106, 226401.

21

Karimi, H.; Affleck, I. Towards a rigorous proof of magnetism on the edges of graphene nanoribbons. Phys. Rev. B 2012, 86, 115446.

22

Park, S.; Hu, Y.; Hwang, J. O.; Lee, E. S.; Casabianca, L. B.; Cai, W.; Potts, J. R.; Ha, H. W.; Chen, S.; Oh, J. et al. Chemical structures of hydrazine-treated graphene oxide and generation of aromatic nitrogen doping. Nat. Commun. 2012, 3, 638.

23

Li, Y. F.; Zhou, Z.; Shen, P. W.; Chen, Z. F. Spin gapless semiconductor-metal-half-metal properties in nitrogen-doped zigzag graphene nanoribbons. ACS Nano 2009, 3, 1952–1958.

24

Ma, C. C.; Shao, X. H.; Cao, D. P. Nitrogen-doped grapheme nanosheets as anode materials for lithium ion batteries: A first-principles study. J. Mater. Chem. 2012, 22, 8911–8915.

25

Liu, Y.; Tang, N.; Wan, X.; Feng, Q.; Li, M.; Xu, Q.; Liu, F.; Du, Y. Realization of ferromagnetic graphene oxide with high magnetization by doping graphene oxide with nitrogen. Sci. Rep. 2013, 3, 2566.

26

Schniepp, H. C.; Li, J. L.; McAllister, M. J.; Sai, H.; Herrera-Alonso, M.; Adamson, D. H.; Prud'homme, R. K.; Car, R.; Saville, D. A.; Aksay, I. A. Functionalized single graphene sheets derived from splitting graphite oxide. J. Phys. Chem. B 2006, 110, 8535–8539.

27

Hofmann, U.; Frenzel, B. D. Quellung von graphit und die bildung von graphitsäure. Chem. Ges. 1930, 63, 1248–1262.

28

Wang, B.; Pantelides, S. T. Magnetic moment of a single vacancy in graphene and semiconducting nanoribbons. Phys. Rev. B 2012, 86, 165438.

29

Chen, J.; Li, L.; Cullen, W. G.; Williams, E. D.; Fuhrer, M. S. Tunable Kondo effect in graphene with defects. Nat. Phys. 2011, 7, 535–538.

30

Ugeda, M. M.; Brihuega, I.; Guinea, F.; Gómez-Rodríguez, J. M. Missing atom as a source of carbon magnetism. Phys. Rev. Lett. 2010, 104, 096804.

31

Palacios, J. J.; Fernández-Rossier, J.; Brey, L. Vacancy-induced magnetism in graphene and graphene ribbons. Phys. Rev. B 2008, 77, 195428.

32

Kopelevich, Y.; da Silva, R. R.; Torres, J. H. S.; Penicaud, A. Local ferromagnetism in microporous carbon with the structural regularity of zeolite Y. Phys. Rev. B 2003, 68, 092408.

33

Yan, L.; Lin, M.; Zeng, C.; Chen, Z.; Zhang, S.; Zhao, X.; Wu, A.; Wang, Y.; Dai, L.; Qu, J. et al. Electroactive and biocompatible hydroxyl-functionalized graphene by ball milling. J. Mater. Chem. 2012, 22, 8367–8371.

34

Liu, Y.; Deng, R.; Wang, Z.; Liu, H. Carboxyl-functionalized grapheme oxide-polyaniline composite as a promising supercapacitor material. J. Mater. Chem. 2012, 22, 13619–13624.

35

Zhang, C.; Hao, R.; Liao, H.; Hou, Y. Synthesis of amino-functionalized graphene as metal-free catalyst and exploration of the roles of various nitrogen states in oxygen reduction reaction. Nano Energy 2013, 2, 88–97.

36

Marquardt, D.; Beckert, F.; Pennetreau, F.; Tolle, F.; Mulhaupt, R.; Riant, O.; Hermans, S.; Barthel, J.; Janiak, C. Hybrid materials of platinum nanoparticles and thiol-functionalized graphene derivatives. Carbon 2014, 66, 285–294.

37

Beckert, F.; Friedrich, C.; Thomann, R.; Mülhaupt, R. Sulfur-functionalized graphenes as macro-chain-transfer and RAFT agents for producing graphene polymer brushes and polystyrene nanocomposites. Macromolecules 2012, 45, 7083–7090.

38

Chaudhary, S.; Chattopadhyay, M. K.; Singh, K. J.; Roy, S. B.; Chaddah, P.; Sampathkumaran, E. V. Thermomagnetic history effects in SmMn2Ge2. Phys. Rev. B 2002, 66, 014424.

39

Ro, C.; Grest, G. S.; Soukouli, C. M.; Levin, K. Irreversibility in random-field ferromagnets and diluted antiferromagnets. Phys. Rev. B 1985, 31, 1682–1685.

Nano Research
Pages 1507-1518
Cite this article:
Sun P, Wang K, Wei J, et al. Magnetic transitions in graphene derivatives. Nano Research, 2014, 7(10): 1507-1518. https://doi.org/10.1007/s12274-014-0512-1

459

Views

40

Crossref

N/A

Web of Science

36

Scopus

0

CSCD

Altmetrics

Received: 01 April 2014
Revised: 21 May 2014
Accepted: 09 June 2014
Published: 16 August 2014
© Tsinghua University Press and Springer‐Verlag Berlin Heidelberg 2014
Return