AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Architecture of PtFe/C catalyst with high activity and durability for oxygen reduction reaction

Jiayuan Li1,2Guoxiong Wang1( )Jing Wang1,2Shu Miao3Mingming Wei1,2Fan Yang1Liang Yu1Xinhe Bao1,3( )
State Key Laboratory of Catalysis, Dalian Institute of Chemical PhysicsChinese Academy of Sciences, 457 Zhongshan RoadDalian116023China
University of Chinese Academy of SciencesBeijing100039China
Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical PhysicsChinese Academy of SciencesDalian116023China
Show Author Information

Graphical Abstract

Abstract

A PtFe/C catalyst has been synthesized by impregnation and high-temperature reduction followed by acid-leaching. X-ray diffraction, X-ray photoelectron spectroscopy and X-ray atomic near edge spectroscopy characterization reveal that Pt3Fe alloy formation occurs during high-temperature reduction and that unstable Fe species are dissolved into acid solution. The difference in Fe concentration from the core region to the surface and strong O-Fe bonding may drive the outward diffusion of Fe to the highly corrugated Pt-skeleton, and the resulting highly dispersed surface FeOx is stable in acidic medium, leading to the construction of a Pt3Fe@Pt-FeOx architecture. The as prepared PtFe/C catalyst demonstrates a higher activity and comparable durability for the oxygen reduction reaction compared with a Pt/C catalyst, which might be due to the synergetic effect of surface and subsurface Fe species in the PtFe/C catalyst.

Electronic Supplementary Material

Download File(s)
12274_2014_513_MOESM1_ESM.pdf (593.3 KB)

References

1

Gasteiger, H. A.; Kocha, S. S.; Sompalli, B.; Wagner, F. T. Activity benchmarks and requirements for Pt, Pt-alloy, and non-Pt oxygen reduction catalysts for PEMFCs. Appl. Catal. B-Environ. 2005, 56, 9–35.

2

Rabis, A.; Rodriguez, P.; Schmidt, T. J. Electrocatalysis for polymer electrolyte fuel cells: Recent achievements and future challenges. ACS Catal. 2012, 2, 864–890.

3

Toda, T.; Igarashi, H.; Uchida, H.; Watanabe, M. Enhancement of the electroreduction of oxygen on Pt alloys with Fe, Ni, and Co. J. Electrochem. Soc. 1999, 146, 3750–3756.

4

Wang, C.; Markovic, N. M.; Stamenkovic, V. R. Advanced platinum alloy electrocatalysts for the oxygen reduction reaction. ACS Catal. 2012, 2, 891–898.

5

Stephens, I. E. L.; Bondarenko, A. S.; Grønbjerg, U.; Rossmeisl, J.; Chorkendorff, I. Understanding the electrocatalysis of oxygen reduction on platinum and its alloys. Energy Environ. Sci. 2012, 5, 6744–6762.

6

Lefèvre, M.; Proietti, E.; Jaouen, F.; Dodelet, J. -P. Ironbased catalysts with improved oxygen reduction activity in polymer electrolyte fuel cells. Science 2009, 324, 71–74.

7

Wu, G.; More, K. L.; Johnston, C. M.; Zelenay, P. High-performance electrocatalysts for oxygen reduction derived from polyaniline, iron, and cobalt. Science 2011, 332, 443–447.

8

Chung, H. T.; Won, J. H.; Zelenay, P. Active and stablecarbon nanotube/nanoparticle composite electrocatalyst foroxygen reduction. Nat. Commun. 2013, 4, 1922/DOI:10.1038/ncomms2944.

9

Deng, D. H.; Yu, L.; Chen, X. Q.; Wang, G. X.; Jin, L.; Pan, X. L.; Deng, J.; Sun, G. Q.; Bao, X. H. Iron encapsulated within pod-like carbon nanotubes for oxygen reduction reaction. Angew. Chem. Int. Ed. 2013, 52, 371–375.

10

Stamenkovic, V. R.; Mun, B. S.; Arenz, M.; Mayrhofer, K. J. J.; Lucas, C. A.; Wang, G. F.; Ross, P. N.; Markovic, N. M. Trends in electrocatalysis on extended and nanoscale Pt-bimetallic alloy surfaces. Nat. Mater. 2007, 6, 241–247.

11

Stamenkovic, V. R.; Fowler, B.; Mun, B. S.; Wang, G. F.; Ross, P. N.; Lucas, C. A.; Marković, N. M. Improved oxygen reduction activity on Pt3Ni(111) via increased surface site availability. Science 2007, 315, 493–497.

12

Chen, S.; Sheng, W. C.; Yabuuchi, N.; Ferreira, P. J.; Allard, L. F.; Shao-Horn, Y. Origin of oxygen reduction reaction activity on "Pt3Co" nanoparticles: Atomically resolved chemical compositions and structures. J. Phys. Chem. C 2009, 113, 1109–1125.

13

Chen, S.; Gasteiger, H. A.; Hayakawa, K.; Tada, T.; Shao-Horn, Y. Platinum-alloy cathode catalyst degradation in proton exchange membrane fuel cells: Nanometer-scale compositional and morphological changes. J. Electrochem. Soc. 2010, 157, A82–A97.

14

Carlton, C. E.; Chen, S.; Ferreira, P. J.; Allard, L. F.; Shao-Horn, Y. Sub-nanometer-resolution elemental mapping of "Pt3Co" nanoparticle catalyst degradation in proton-exchange membrane fuel cells. J. Phys. Chem. Lett. 2012, 3, 161–166.

15

Hoshi, Y.; Yoshida, T.; Nishikata, A.; Tsuru, T. Dissolution of Pt-M (M: Cu, Co, Ni, Fe) binary alloys in sulfuric acid solution. Electrochim. Acta 2011, 56, 5302–5309.

16

Kim, J.; Lee, S. W.; Carlton, C.; Shao-Horn, Y. Oxygen reduction activity of PtxNi1-x alloy nanoparticles on multiwall carbon nanotubes. Electrochem. Solid-State Lett. 2011, 14, B110–B113.

17

Fu, Q.; Yang, F.; Bao, X. H. Interface-confined oxide nanostructures for catalytic oxidation reactions. Acc. Chem. Res. 2013, 46, 1692–1701.

18

Fu, Q.; Li, W. -X.; Yao, Y. X.; Liu, H. Y.; Su, H. -Y.; Ma, D.; Gu, X. -K.; Chen, L. M.; Wang, Z.; Zhang, H. et al. Interface-confined ferrous centers for catalytic oxidation. Science 2010, 328, 1141–1144.

19

Mu, R. T.; Fu, Q.; Xu, H.; Zhang, H.; Huang, Y. Y.; Jiang, Z.; Zhang, S.; Tan, D. L.; Bao, X. H. Synergetic effect of surface and subsurface Ni species at Pt-Ni bimetallic catalysts for CO oxidation. J. Am. Chem. Soc. 2011, 133, 1978–1986.

20

Xu, H.; Fu, Q.; Yao, Y. X.; Bao, X. H. Highly active Pt-Fe bicomponent catalysts for CO oxidation in the presence and absence of H2. Energy Environ. Sci. 2012, 5, 6313–6320.

21

Yang, X.; Hu, J.; Fu, J.; Wu, R. Q.; Koel, B. E. Role of surface iron in enhanced activity for the oxygen reduction reaction on a Pd3Fe(111) single-crystal alloy. Angew. Chem. Int. Ed. 2011, 50, 10182–10185.

22

Wang, C.; Chi, M. F.; Li, D. G.; Strmcnik, D.; van der Vliet, D.; Wang, G. F.; Komanicky, V.; Chang, K. -C.; Paulikas, A. P.; Tripkovic, D. et al. Design and synthesis of bimetallic electrocatalyst with multilayered Pt-skin surfaces. J. Am. Chem. Soc. 2011, 133, 14396–14403.

23

Kobayashi, M.; Hidai, S.; Niwa, H.; Harada, Y.; Oshima, M.; Horikawa, Y.; Tokushima, T.; Shin, S.; Nakamori, Y.; Aoki, T. Co oxidation accompanied by degradation of Pt-Co alloy cathode catalysts in polymer electrolyte fuel cells. Phys. Chem. Chem. Phys. 2009, 11, 8226–8230.

24

Ma, T.; Fu, Q.; Su, H. -Y.; Liu, H. -Y.; Cui, Y.; Wang, Z.; Mu, R. T.; Li, W. -X.; Bao, X. H. Reversible structural modulation of Fe-Pt bimetallic surfaces and its effect on reactivity. ChemPhysChem 2009, 10, 1013–1016.

25

Wang, Q.; Wang G. X.; Sasaki K.; Takeguchi T.; Yamanaka T.; Sadakane M.; Ueda W. Structure and electrochemical activity of WOx-supported PtRu catalysts using three-dimensionally ordered macroporous WO3 as the template. J. Power Sources 2013, 241, 728–735.

26

Pozio, A.; Francesco, M. D.; Cemmi, A.; Cardellini, F.; Giorgi, L. Comparison of high surface Pt/C catalysts by cyclic voltammetry. J. Power Sources 2002, 105, 13–19.

27

Wang, G. X.; Takeguchi, T.; Yamanaka, T.; Muhamad, E. N.; Mastuda, M.; Ueda, W. Effect of preparation atmosphere of Pt-SnOx/C catalysts on the catalytic activity for H2/CO electro-oxidation. Appl. Catal. B-Environ. 2010, 98, 86–93.

28

Li, W. Z.; Xin, Q.; Yan, Y. S. Nanostructured Pt-Fe/C cathode catalysts for direct methanol fuel cell: The effect of catalyst composition. Int. J. Hydrogen Energy 2010, 35, 2530–2538.

29

Li, W. Z.; Zhou, W. J.; Li, H. Q.; Zhou, Z. H.; Zhou, B.; Sun, G. Q.; Xin, Q. Nano-stuctured Pt-Fe/C as cathode catalyst in direct methanol fuel cell. Electrochim. Acta 2004, 49, 1045–1055.

30

Gan, L.; Yu, R.; Luo, J.; Cheng, Z. Y.; Zhu, J. Lattice strain distributions in individual dealloyed Pt-Fe catalyst nanoparticles. J. Phys. Chem. Lett. 2012, 3, 934–938.

31

Wang C.; Wang G. F.; van der Vliet, D.; Chang K. -C.; Markovic N. M.; Stamenkovic V. R. Monodisperse Pt3Co nanoparticles as electrocatalyst: The effects of particle size and pretreatment on electrocatalytic reduction of oxygen. Phys. Chem. Chem. Phys. 2010, 12, 6933–6939.

32

Xu, Z.; Zhang, H. M.; Zhong, H. X.; Lu, Q. H.; Wang, Y. F.; Su, D. S. Effect of particle size on the activity and durability of the Pt/C electrocatalyst for proton exchange membrane fuel cells. Appl. Catal. B-Environ. 2012, 111–112, 264–270.

33

Wang, G. X.; Sun, G. Q.; Wang, Q.; Wang, S. L.; Sun, H.; Xin, Q. Effect of carbon black additive in Pt black cathode catalyst layer on direct methanol fuel cell performance. Int. J. Hydrogen. Energy 2010, 35, 11245–11253.

Nano Research
Pages 1519-1527
Cite this article:
Li J, Wang G, Wang J, et al. Architecture of PtFe/C catalyst with high activity and durability for oxygen reduction reaction. Nano Research, 2014, 7(10): 1519-1527. https://doi.org/10.1007/s12274-014-0513-0

662

Views

43

Crossref

N/A

Web of Science

46

Scopus

8

CSCD

Altmetrics

Received: 07 May 2014
Revised: 07 June 2014
Accepted: 10 June 2014
Published: 26 August 2014
© Tsinghua University Press and Springer-Verlag Berlin Heidelberg 2014
Return