Discover the SciOpen Platform and Achieve Your Research Goals with Ease.
Search articles, authors, keywords, DOl and etc.
A PtFe/C catalyst has been synthesized by impregnation and high-temperature reduction followed by acid-leaching. X-ray diffraction, X-ray photoelectron spectroscopy and X-ray atomic near edge spectroscopy characterization reveal that Pt3Fe alloy formation occurs during high-temperature reduction and that unstable Fe species are dissolved into acid solution. The difference in Fe concentration from the core region to the surface and strong O-Fe bonding may drive the outward diffusion of Fe to the highly corrugated Pt-skeleton, and the resulting highly dispersed surface FeOx is stable in acidic medium, leading to the construction of a Pt3Fe@Pt-FeOx architecture. The as prepared PtFe/C catalyst demonstrates a higher activity and comparable durability for the oxygen reduction reaction compared with a Pt/C catalyst, which might be due to the synergetic effect of surface and subsurface Fe species in the PtFe/C catalyst.
Gasteiger, H. A.; Kocha, S. S.; Sompalli, B.; Wagner, F. T. Activity benchmarks and requirements for Pt, Pt-alloy, and non-Pt oxygen reduction catalysts for PEMFCs. Appl. Catal. B-Environ. 2005, 56, 9–35.
Rabis, A.; Rodriguez, P.; Schmidt, T. J. Electrocatalysis for polymer electrolyte fuel cells: Recent achievements and future challenges. ACS Catal. 2012, 2, 864–890.
Toda, T.; Igarashi, H.; Uchida, H.; Watanabe, M. Enhancement of the electroreduction of oxygen on Pt alloys with Fe, Ni, and Co. J. Electrochem. Soc. 1999, 146, 3750–3756.
Wang, C.; Markovic, N. M.; Stamenkovic, V. R. Advanced platinum alloy electrocatalysts for the oxygen reduction reaction. ACS Catal. 2012, 2, 891–898.
Stephens, I. E. L.; Bondarenko, A. S.; Grønbjerg, U.; Rossmeisl, J.; Chorkendorff, I. Understanding the electrocatalysis of oxygen reduction on platinum and its alloys. Energy Environ. Sci. 2012, 5, 6744–6762.
Lefèvre, M.; Proietti, E.; Jaouen, F.; Dodelet, J. -P. Ironbased catalysts with improved oxygen reduction activity in polymer electrolyte fuel cells. Science 2009, 324, 71–74.
Wu, G.; More, K. L.; Johnston, C. M.; Zelenay, P. High-performance electrocatalysts for oxygen reduction derived from polyaniline, iron, and cobalt. Science 2011, 332, 443–447.
Chung, H. T.; Won, J. H.; Zelenay, P. Active and stablecarbon nanotube/nanoparticle composite electrocatalyst foroxygen reduction. Nat. Commun. 2013, 4, 1922/DOI:10.1038/ncomms2944.
Deng, D. H.; Yu, L.; Chen, X. Q.; Wang, G. X.; Jin, L.; Pan, X. L.; Deng, J.; Sun, G. Q.; Bao, X. H. Iron encapsulated within pod-like carbon nanotubes for oxygen reduction reaction. Angew. Chem. Int. Ed. 2013, 52, 371–375.
Stamenkovic, V. R.; Mun, B. S.; Arenz, M.; Mayrhofer, K. J. J.; Lucas, C. A.; Wang, G. F.; Ross, P. N.; Markovic, N. M. Trends in electrocatalysis on extended and nanoscale Pt-bimetallic alloy surfaces. Nat. Mater. 2007, 6, 241–247.
Stamenkovic, V. R.; Fowler, B.; Mun, B. S.; Wang, G. F.; Ross, P. N.; Lucas, C. A.; Marković, N. M. Improved oxygen reduction activity on Pt3Ni(111) via increased surface site availability. Science 2007, 315, 493–497.
Chen, S.; Sheng, W. C.; Yabuuchi, N.; Ferreira, P. J.; Allard, L. F.; Shao-Horn, Y. Origin of oxygen reduction reaction activity on "Pt3Co" nanoparticles: Atomically resolved chemical compositions and structures. J. Phys. Chem. C 2009, 113, 1109–1125.
Chen, S.; Gasteiger, H. A.; Hayakawa, K.; Tada, T.; Shao-Horn, Y. Platinum-alloy cathode catalyst degradation in proton exchange membrane fuel cells: Nanometer-scale compositional and morphological changes. J. Electrochem. Soc. 2010, 157, A82–A97.
Carlton, C. E.; Chen, S.; Ferreira, P. J.; Allard, L. F.; Shao-Horn, Y. Sub-nanometer-resolution elemental mapping of "Pt3Co" nanoparticle catalyst degradation in proton-exchange membrane fuel cells. J. Phys. Chem. Lett. 2012, 3, 161–166.
Hoshi, Y.; Yoshida, T.; Nishikata, A.; Tsuru, T. Dissolution of Pt-M (M: Cu, Co, Ni, Fe) binary alloys in sulfuric acid solution. Electrochim. Acta 2011, 56, 5302–5309.
Kim, J.; Lee, S. W.; Carlton, C.; Shao-Horn, Y. Oxygen reduction activity of PtxNi1-x alloy nanoparticles on multiwall carbon nanotubes. Electrochem. Solid-State Lett. 2011, 14, B110–B113.
Fu, Q.; Yang, F.; Bao, X. H. Interface-confined oxide nanostructures for catalytic oxidation reactions. Acc. Chem. Res. 2013, 46, 1692–1701.
Fu, Q.; Li, W. -X.; Yao, Y. X.; Liu, H. Y.; Su, H. -Y.; Ma, D.; Gu, X. -K.; Chen, L. M.; Wang, Z.; Zhang, H. et al. Interface-confined ferrous centers for catalytic oxidation. Science 2010, 328, 1141–1144.
Mu, R. T.; Fu, Q.; Xu, H.; Zhang, H.; Huang, Y. Y.; Jiang, Z.; Zhang, S.; Tan, D. L.; Bao, X. H. Synergetic effect of surface and subsurface Ni species at Pt-Ni bimetallic catalysts for CO oxidation. J. Am. Chem. Soc. 2011, 133, 1978–1986.
Xu, H.; Fu, Q.; Yao, Y. X.; Bao, X. H. Highly active Pt-Fe bicomponent catalysts for CO oxidation in the presence and absence of H2. Energy Environ. Sci. 2012, 5, 6313–6320.
Yang, X.; Hu, J.; Fu, J.; Wu, R. Q.; Koel, B. E. Role of surface iron in enhanced activity for the oxygen reduction reaction on a Pd3Fe(111) single-crystal alloy. Angew. Chem. Int. Ed. 2011, 50, 10182–10185.
Wang, C.; Chi, M. F.; Li, D. G.; Strmcnik, D.; van der Vliet, D.; Wang, G. F.; Komanicky, V.; Chang, K. -C.; Paulikas, A. P.; Tripkovic, D. et al. Design and synthesis of bimetallic electrocatalyst with multilayered Pt-skin surfaces. J. Am. Chem. Soc. 2011, 133, 14396–14403.
Kobayashi, M.; Hidai, S.; Niwa, H.; Harada, Y.; Oshima, M.; Horikawa, Y.; Tokushima, T.; Shin, S.; Nakamori, Y.; Aoki, T. Co oxidation accompanied by degradation of Pt-Co alloy cathode catalysts in polymer electrolyte fuel cells. Phys. Chem. Chem. Phys. 2009, 11, 8226–8230.
Ma, T.; Fu, Q.; Su, H. -Y.; Liu, H. -Y.; Cui, Y.; Wang, Z.; Mu, R. T.; Li, W. -X.; Bao, X. H. Reversible structural modulation of Fe-Pt bimetallic surfaces and its effect on reactivity. ChemPhysChem 2009, 10, 1013–1016.
Wang, Q.; Wang G. X.; Sasaki K.; Takeguchi T.; Yamanaka T.; Sadakane M.; Ueda W. Structure and electrochemical activity of WOx-supported PtRu catalysts using three-dimensionally ordered macroporous WO3 as the template. J. Power Sources 2013, 241, 728–735.
Pozio, A.; Francesco, M. D.; Cemmi, A.; Cardellini, F.; Giorgi, L. Comparison of high surface Pt/C catalysts by cyclic voltammetry. J. Power Sources 2002, 105, 13–19.
Wang, G. X.; Takeguchi, T.; Yamanaka, T.; Muhamad, E. N.; Mastuda, M.; Ueda, W. Effect of preparation atmosphere of Pt-SnOx/C catalysts on the catalytic activity for H2/CO electro-oxidation. Appl. Catal. B-Environ. 2010, 98, 86–93.
Li, W. Z.; Xin, Q.; Yan, Y. S. Nanostructured Pt-Fe/C cathode catalysts for direct methanol fuel cell: The effect of catalyst composition. Int. J. Hydrogen Energy 2010, 35, 2530–2538.
Li, W. Z.; Zhou, W. J.; Li, H. Q.; Zhou, Z. H.; Zhou, B.; Sun, G. Q.; Xin, Q. Nano-stuctured Pt-Fe/C as cathode catalyst in direct methanol fuel cell. Electrochim. Acta 2004, 49, 1045–1055.
Gan, L.; Yu, R.; Luo, J.; Cheng, Z. Y.; Zhu, J. Lattice strain distributions in individual dealloyed Pt-Fe catalyst nanoparticles. J. Phys. Chem. Lett. 2012, 3, 934–938.
Wang C.; Wang G. F.; van der Vliet, D.; Chang K. -C.; Markovic N. M.; Stamenkovic V. R. Monodisperse Pt3Co nanoparticles as electrocatalyst: The effects of particle size and pretreatment on electrocatalytic reduction of oxygen. Phys. Chem. Chem. Phys. 2010, 12, 6933–6939.
Xu, Z.; Zhang, H. M.; Zhong, H. X.; Lu, Q. H.; Wang, Y. F.; Su, D. S. Effect of particle size on the activity and durability of the Pt/C electrocatalyst for proton exchange membrane fuel cells. Appl. Catal. B-Environ. 2012, 111–112, 264–270.
Wang, G. X.; Sun, G. Q.; Wang, Q.; Wang, S. L.; Sun, H.; Xin, Q. Effect of carbon black additive in Pt black cathode catalyst layer on direct methanol fuel cell performance. Int. J. Hydrogen. Energy 2010, 35, 11245–11253.